Loading...

Daily news and top headlines for life science research professionals

FREE Email Newsletter View Sample


Neurons Made from Stem Cells Drive Brain Activity After Transplantation in Laboratory Model

Featured In: Academia News | Neuroscience

Friday, November 16, 2023

See today's top life science stories and headlines - Sign up now!

newsvine diigo google
slashdot
Share
Loading...

Researchers and patients look forward to the day when stem cells might be used to replace dying brain cells in Alzheimer’s disease and other neurodegenerative conditions. Scientists are currently able to make neurons and other brain cells from stem cells, but getting these neurons to properly function when transplanted to the host has proven to be more difficult. Now, researchers at Sanford-Burnham Medical Research Institute have found a way to stimulate stem cell-derived neurons to direct cognitive function after transplantation to an existing neural network. The study was published November 7 in the Journal of Neuroscience.

“We showed for the first time that embryonic stem cells that we’ve programmed to become neurons can integrate into existing brain circuits and fire patterns of electrical activity that are critical for consciousness and neural network activity,” said Stuart A. Lipton, M.D., Ph.D., senior author of the study. Lipton is director of Sanford-Burnham’s Del E. Webb Neuroscience, Aging, and Stem Cell Research Center and a clinical neurologist.

The trick turned out to be light. Lipton and his team—including Juan Piña-Crespo, Ph.D., Maria Talantova, Ph.D., and other colleagues at Sanford-Burnham and Stanford University—transplanted human stem cell-derived neurons into a rodent hippocampus, the brain’s information-processing center. Then they specifically activated the transplanted neurons with optogenetic stimulation, a relatively new technique that combines light and genetics to precisely control cellular behavior in living tissues or animals.

To determine if the newly transplanted, light-stimulated human neurons were actually working, Lipton and his team measured high-frequency oscillations in existing neurons at a distance from the transplanted ones. They found that the transplanted neurons triggered the existing neurons to fire high-frequency oscillations. Faster neuronal oscillations are usually better—they’re associated with enhanced performance in sensory-motor and cognitive tasks.

To sum it up, the transplanted human neurons not only conducted electrical impulses, they also roused neighboring neuronal networks into firing—at roughly the same rate they would in a normal, functioning hippocampus.

The therapeutic outlook for this technology looks promising. “Based on these results, we might be able to restore brain activity—and thus restore motor and cognitive function—by transplanting easily manipulated neuronal cells derived from embryonic stem cells,” Lipton said.

Source: Sanford-Burnham Medical Research Institute

Join the Discussion
Rate Article: Average 0 out of 5
register or log in to comment on this article!

0 Comments

Add Comment

Text Only 2000 character limit

Page 1 of 1

Research Exchange

Live Cell Analysis of Autophagy

Sep 4

Analysis of autophagosome formation using fluorescent cellular imaging and lentiviral biosensors.

Deconstructing 3D Cell Culture

Aug 31

3D culture models offer the potential to significantly reduce drug failure.

Safety Without Sacrifice

Safety Without Sacrifice

Jun 26

Liquid handling ergonomics and performance considerations

ELNs: The Beating Heart of a Scientist’s World

ELNs: The Beating Heart of a Scientist’s World

May 22

As ELNs deliver more benefits to researchers, the cost of changing working practice is outweighed by access to high quality, high context collaboration.

Evaluation of a New Nano-Type UV-Vis Spectrophotometer

Mar 3 2011

Analysis of one- to four-microliter size samples for nucleic acids has become routine in many life science laboratories. However, until now, available instruments require considerable manipulation of the instrument and sample; some require manually recording the data. The user must typically lower and raise the arm manually, then wipe the sample manually from the target after each analysis. And fiberoptics used in some of these instruments are subject to deterioration.

Production of Recombinant Proteins and Monoclonal Antibodies in Hollow Fiber Bioreactors

Jan 25 2011

While well-understood, robust and convenient, classical batch-style 2-D culture on non-porous supports or 3-D suspension culture in other devices are really not very biologically relevant models. Cell culture conditions can affect the quality of the antibody or protein produced.

Selecting Robots for Use in Drug Discovery and Testing

Dec 6 2010

Drug discovery and testing, with their need for speed, repeatability and verification, are ideally suited to benefit from robot automation. It is therefore not surprising that robots have been at the forefront of automation developments in both these areas.

HP Scalable Network Storage Systems for Life Sciences

Sep 13 2010

Life sciences research today is advancing exponentially, each step bringing us closer to the realization of truly personalized medicine–preventive care and treatments designed specifically for each individual. In the near future, PCPGM healthcare researchers expect to be able to use predictive genetic testing to create custom treatment plans for individuals and deliver dramatic improvements over today’s one-size-fits-all approach. But research capabilities are only part of the equation; current storage and operating capacities must also evolve to accommodate ever-expanding amounts of data before the goal of personalized medicine can be realized.

STAY INFORMED: SUBSCRIBE TO

Magazine and E-mail Newsletters

Loading...
Loading...

Free Life Science Industry
Subscriptions

Magazine

wireless week

Newsletters

newsletters

Sign up now



MULTIMEDIA

Video:

Epigenetics

Aug 30

Hank & his clone Circus Hank explain the power of epigenetics, which studies the factors that determine how much or whether some genes are expressed in your body.

Podcasts:

Futures In Biotech 93: Snyder's Omics

May 17

Host: Marc Pelletier Co-Host: Andre Nantel, Ph.D. The technologies that our guest has developed are playing an important role in changing the world, not like the car, the microwave and the cell phone, but as in Drs. Flox, McCoy, and Crusher. Guest: Dr. Michael Snyder We invite...

Top Stories and Headlines
EVERY DAY!

FREE Email Newsletter

Information: