Biological Circuits for Synthetic Biology

Featured In: Academia News

Thursday, May 26, 2024

Get daily Bioscience Technology industry top stories and headlines - Sign up now!

newsvine diigo google
slashdot
Share
Loading...

“If you don’t like the news, go out and make some of your own.” . . . Wes “Scoop” Nisker.

Taking a page from the book of San Francisco radio legend Scoop Nisker, biologists who find themselves dissatisfied with the microbes nature has provided are going out and making some of their own. Members of the fast-growing “synthetic biology” research community are designing and constructing novel organisms and biologically-inspired systems – or redesigning existing organisms and systems – to solve problems that natural systems cannot. The range of potential applications for synthetic biological systems runs broad and deep, and includes such profoundly important ventures as the microbial-based production of advanced biofuels and inexpensive versions of critical therapeutic drugs.

Synthetic biology, however, is still a relatively new scientific field plagued with the trial and error inefficiencies that hamper most technologies in their early stages of development. To help address these problems, synthetic biologists aim to create biological circuits that can be used for the safer and more efficient construction of increasingly complex functions in microorganisms. A central component of such circuits is RNA, the multipurpose workhorse molecule of biology.

“A widespread natural ability to sense small molecules and regulate genes has made the RNA molecule an important tool for synthetic biology in applications as diverse as environmental sensing and metabolic engineering,” says Adam Arkin, a computational biologist with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab), where he serves as director of the Physical Biosciences Division. Arkin is also a professor at the University of California (UC) Berkeley where he directs the Synthetic Biology Institute, a partnership between UC Berkeley and Berkeley Lab.

In his multiple capacities, Arkin is leading a major effort to use RNA molecules for the engineering of programmable genetic networks. In recent years, scientists have learned that the behavior of cells is often governed by multiple different genes working together in networked teams that are regulated through RNA-based mechanisms. Synthetic biologists have been using RNA regulatory mechanisms to program genetic networks in cells to achieve specific results. However, to date these programming efforts have required proteins to propagate RNA regulatory signals. This can pose problems because one of the primary goals of synthetic biology is to create families of standard genetic parts that can be combined to create biological circuits with behaviors that are to some extent predictable. Proteins can be difficult to design and predict. They also add a layer of complexity to biological circuits that can delay and slow the dynamics of the circuit’s responses.

“We’re now able to eliminate the protein requirement and directly propagate regulatory signals as RNA molecules,” Arkin says.

Working with their own variations of RNA transcription attenuators – nucleotide sequences that under a specific set of conditions will stop the RNA transcription process – Arkin and his colleagues engineered a system in which these independent attenuators can be configured to sense RNA input and synthesize RNA output signals. These variant RNA attenuators can also be configured to regulate multiple genes in the same cell and – through the controlled expression of these genes – perform logic operations.

“We have demonstrated the ability to construct with minimal changes orthogonal variants of natural RNA transcription attenuators that function more or less homogeneously in a single regulatory system, and we have shown that the composition of this system is predictable,” Arkin says. “This is the first time that the three regulatory features of our system, which are all properties featured in a semiconductor transistor, have been captured in a single biological molecule.”

A paper describing this breakthrough appears in the Proceedings of the National Academy of Science (PNAS) under the title Versatile RNA-sensing transcriptional regulators for engineering genetic networks. Co-authoring the paper with Arkin were first authors Julius Lucks and Lei “Stanley” Qi, plus Vivek Mutalik and Denise Wang.

The success of Arkin and his colleagues was based on their making use of an element in the bacterial plasmid (Staphylococcus aureus)known as pT181. The element in pT181 was an antisense RNA-mediated transcription attenuation mechanism that controls the plasmid’s copy number. Plasmids are molecules of DNA that serve as a standard tool of synthetic biology for, among other applications, encoding RNA molecules. Antisense RNA consists of non-coding nucleotide sequences that are used to regulate genetic elements and activities, including transcription. Since the plasmid pT181 antisense-RNA-mediated transcription attenuation mechanism works through RNA-to-RNA interactions, Arkin and his colleagues could use it to create attenuator variants that would independently regulate the transcription activity of multiple targets in the same cell – in this case, in Escherichia coli, one of the most popular bacteria for synthetic biology applications.

“It is very advantageous to have independent regulatory units that control processes such as transcription because the assembly of these units into genetic networks follows a simple rule of composition,” Arkin says.

While acknowledging the excellent work done on other RNA-based regulatory mechanisms that can each perform some portion of the control functions required for a genetic network, Arkin believes that the attenuator variants he and his colleagues engineered provide the simplest route to achieving all of the required control functions within a single regulatory mechanism.

“Furthermore,” he says, “these previous efforts were fundamentally dependent on molecular interactions through space between two or more regulatory subunits to create a network. Our approach, which relies on the processive transcription process, is more reliable.”

Arkin and his colleagues say their results provide synthetic biologists with a versatile new set of RNA-based transcriptional regulators that could change how future genetic networks are designed and constructed. Their engineering strategy for constructing orthogonal variants from natural RNA system should also be applicable to other gene regulatory mechanisms, and should add to the growing synthetic biology repertoire.

“Although RNA has less overall functionality than proteins, its nucleic acid-based polymer physics make mechanisms based on RNA simpler and easier to engineer and evolve,” Arkin says. “With our RNA regulatory system and other work in progress, we’re on our way to developing the first complete and scalable biological design system. Ultimately, our goal is to create a tool revolution in synthetic biology similar to the revolution that led to the success of major integrated circuit design and deployment.”

Much of this research was supported by was supported by the Synthetic Biology Engineering Research Center (SynBERC) under a grant from the National Science Foundation.

Source: Lawrence Berkeley National Laboratory

Join the Discussion
Rate Article: Average 0 out of 5
register or log in to comment on this article!

0 Comments

Add Comment

Text Only 2000 character limit

Page 1 of 1

Research Exchange

Bringing the Cell Image into Focus

Nov 2 2010

Improvements in transmission electron microscope (TEM) technology increase the power of this imaging tool for the study of cell biology.

Finding a Cure for Spinal Cord Injury with On-Demand LIMS

Oct 25 2010

The Miami Project to Cure Paralysis finds an on-demand laboratory information management system (LIMS) helps to accelerate discovery in its HCS projects.

Saving Cells: Image Processing for Improved Viability, Part II: Iterative Deconvolution

Oct 25 2010

3D light microscopy and deconvolution provide a means to investigate 3D structure, providing near-confocal quality images without the temporal requirements or potentially damaging phototoxicity associated with other 3D imaging technologies. This article is Part II in a series regarding viability, resolution improvement, and measurement in fluorescence imaging. Part I focused on spectral unmixing.

Saving Cells: Image Processing for Improved Viability

Sep 22 2010

This article is Part I of a two-part series regarding viability, resolution improvement, and measurement in fluorescence imaging. Part II will focus on deconvolution.

Evaluation of a New Nano-Type UV-Vis Spectrophotometer

Mar 3

Analysis of one- to four-microliter size samples for nucleic acids has become routine in many life science laboratories. However, until now, available instruments require considerable manipulation of the instrument and sample; some require manually recording the data. The user must typically lower and raise the arm manually, then wipe the sample manually from the target after each analysis. And fiberoptics used in some of these instruments are subject to deterioration.

Production of Recombinant Proteins and Monoclonal Antibodies in Hollow Fiber Bioreactors

Jan 25

While well-understood, robust and convenient, classical batch-style 2-D culture on non-porous supports or 3-D suspension culture in other devices are really not very biologically relevant models. Cell culture conditions can affect the quality of the antibody or protein produced.

Selecting Robots for Use in Drug Discovery and Testing

Dec 6 2010

Drug discovery and testing, with their need for speed, repeatability and verification, are ideally suited to benefit from robot automation. It is therefore not surprising that robots have been at the forefront of automation developments in both these areas.

HP Scalable Network Storage Systems for Life Sciences

Sep 13 2010

Life sciences research today is advancing exponentially, each step bringing us closer to the realization of truly personalized medicine–preventive care and treatments designed specifically for each individual. In the near future, PCPGM healthcare researchers expect to be able to use predictive genetic testing to create custom treatment plans for individuals and deliver dramatic improvements over today’s one-size-fits-all approach. But research capabilities are only part of the equation; current storage and operating capacities must also evolve to accommodate ever-expanding amounts of data before the goal of personalized medicine can be realized.

Using the Tecan Genesis Workstation to Automate a Cytometric Bead Array (CBA) Immunoassay

Mar 11 2010

The poster describe the process involved in automating a Cytometric Bead Array (CBA) immunoassay developed to measure relative concentrations of serum antibodies against Tetanus (TT), Sperm Whale Myoglobin (SWM) and Keyhole Limpet Hemocyanin (KLH) in KLH-immunized volunteers.

Ensuring Quality in Assays Performed with Automated Liquid Handlers

Feb 2 2010

The focus of this presentation is to highlight the need of ensuring quality in important assays performed with automated liquid handlers. Nearly all assays performed within a laboratory are volume-dependent. In turn, all concentrations of biological and chemical components in these assays, as well as the associated dilution protocols, are volume-dependent. Because analyte concentration is volume-dependent, an assay’s results might be falsely interpreted if liquid handler variability and inaccuracies are unknown or if the system(s) go unchecked for a long period.

Inkjet System for Protein Crystallography

Feb 1 2010

X-ray crystallography is used routinely by scientists to obtain the three dimensional structure of a biological molecule of interest.Such information can be used to determine how a pharmaceutical interacts with a protein target and what changes might improve functionality. However, the crystallization of macromolecules still remains a serious hindrance in structural determination despite impressive advances in screening methods and technologies.

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Nov 9 2009

Action selection is modulated by external stimuli either directly or via memory retrieval. In a constantly changing environment, animals have evolved attention-like processes to effectively filter the incoming sensory stream. These attention-like processes, in turn, are modulated by memory. The neurobiological nature of how attention, action selection and memory are inter-connected is unknown. We describe here new phenotypes of the memory mutant radish in the fruit fly Drosophila.

Mortality after Fluid Bolus in African Children with Severe Infection.

9 hours ago

Background The role of fluid resuscitation in the treatment of children with shock and life-threatening infections who live in resource-limited settings is not established. Methods We randomly assigned children with severe febrile illness and impaired perfusion...

Is Biodegradability a Desirable Attribute for Discarded Solid Waste? Perspectives from a National Landfill Greenhouse Gas Inventory Model.

9 hours ago

There is increasing interest in the use of biodegradable materials because they are believed to be "greener". In a landfill, these materials degrade anaerobically to form methane and carbon dioxide. The fraction of the methane that is collected can be utilized...

Prokariotic Cell Collection in Denmark

Nov 6 2009

I would like to know about a prokariotic cell collection in Denmark. Is there a cell bank in this country? I need a Lactobacillus strain for a fermentation assay and this information about the bank is very helpful for me.

Request for Entries

Oct 16 2009

Ask the Experts is your chance to get the answers to questions on applications, materials, methods, processes, and technologies. Email you question to bst_web@advantagemedia.com, and the editors of Bioscience Technology will find an appropriate expert to answer it. Watch this space in the future to see the questions your colleagues are posting.

STAY INFORMED: SUBSCRIBE TO

Magazine and E-mail Newsletters

Loading...
E-mail:   

MULTIMEDIA

Video:

Viewing SureFocus Slides

Jun 11 2010

A demonstration of SureFocus Microscope Slides in the review of AFB Smears. SureFocus Slides are a patent-pending breakthrough in tuberculosis detection, as their fluorescent staining circle remains visible during review, Fluorescence Microscopy.

Podcasts:

Allen Institute for Brain Research

Allen Institute for Brain Research

Oct 14 2009

Discussed in this interview are both the mouse brain project and the human cortex project with an emphasis on the importance of these projects to neuroscience research.

Top Stories and Headlines
EVERYDAY!

FREE Email Newsletter

Information: