Nuclear Magnetic Resonance With No Magnets

Featured In: Academia News

Thursday, May 19, 2024

Get daily Bioscience Technology industry top stories and headlines - Sign up now!

newsvine diigo google
slashdot
Share
Loading...

Nuclear magnetic resonance (NMR), a scientific technique associated with outsized, very low-temperature, superconducting magnets, is one of the principal tools in the chemist’s arsenal, used to study everything from alcohols to proteins to such frontiers as quantum computing. In hospitals the machinery of NMR’s cousin, magnetic resonance imaging (MRI), is as loud as it is big, but nevertheless a mainstay of diagnosis for a wide range of medical conditions.

It sounds like magic, but now two groups of scientists at Berkeley Lab and UC Berkeley, one expert in chemistry and the other in atomic physics, long working together as a multidisciplinary team, have shown that chemical analysis with NMR is practical without using any magnets at all.

Spectroscopy with conventional nuclear magnetic resonance (NMR) requires large, expensive, superconducting magnets cooled by liquid helium, like the one in the background. The Pines and Budker groups have demonstrated NMR spectroscopy with a device only a few centimeters high, using no magnets at all (foreground). A chemical sample in the test tube (green) is polarized by introducing hydrogen gas in the parahydrogen form. The sample’s NMR is measured with an optical-atomic magnetometer, at center; laser beams crossing at right angles pump and probe the atoms in the microfabricated vapor cell. (Source: Lawrence Berkeley National Laboratory)

Dmitry Budker of Berkeley Lab’s Nuclear Science Division, a professor of physics at UC Berkeley, is a protean experimenter who leads a group with interests ranging as far afield as tests of the fundamental theorems of quantum mechanics, biomagnetism in plants, and violations of basic symmetry relations in atomic nuclei. Alex Pines, of the Lab’s Materials Sciences Division and UCB’s Department of Chemistry, is a modern master of NMR and MRI. He guides the work of a talented, ever-changing cadre of postdocs and grad students known as the “Pinenuts” – not only in doing basic research in NMR but in increasing its practical applications. Together the groups have extended the reach of NMR by eliminating the use of magnetic fields at different stages of NMR measurements, and have finally done away with external magnetic fields entirely.

Spinning the information
NMR and MRI depend on the fact that many atomic nuclei possess spin (not classical rotation but a quantum number) and – like miniature planet Earths with north and south magnetic poles – have their own dipolar magnetic fields. In conventional NMR these nuclei are lined up by a strong external magnetic field, then knocked off axis by a burst of radio waves. The rate at which each kind of nucleus then “wobbles” (precesses) is unique and identifies the element; for example a hydrogen-1 nucleus, a lone proton, precesses four times faster than a carbon-13 nucleus having six protons and seven neutrons.

Being able to detect these signals depends first of all on being able to detect net spin; if the sample were to have as many spin-up nuclei as spin-down nuclei it would have zero polarization, and signals would cancel. But since the spin-up orientation requires slightly less energy, a population of atomic nuclei usually has a slight excess of spin ups, if only by a few score in a million.

“Conventional wisdom holds that trying to do NMR in weak or zero magnetic fields is a bad idea,” says Budker, “because the polarization is tiny, and the ability to detect signals is proportional to the strength of the applied field.”

The lines in a typical NMR spectrum reveal more than just different elements. Electrons near precessing nuclei alter their precession frequencies and cause a “chemical shift” — moving the signal or splitting it into separate lines in the NMR spectrum. This is the principal goal of conventional NMR, because chemical shifts point to particular chemical species; for example, even when two hydrocarbons contain the same number of hydrogen, carbon, or other atoms, their signatures differ markedly according to how the atoms are arranged. But without a strong magnetic field, chemical shifts are insignificant.

“Low- or zero-field NMR starts with three strikes against it: small polarization, low detection efficiency, and no chemical-shift signature,” Budker says.

“So why do it?” asks Micah Ledbetter of Budker’s group. It’s a rhetorical question. “The main thing is getting rid of the big, expensive magnets needed for conventional NMR. If you can do that, you can make NMR portable and reduce the costs, including the operating costs. The hope is to be able to do chemical analyses in the field – underwater, down drill holes, up in balloons – and maybe even medical diagnoses, far from well-equipped medical centers.”

“As it happens,” Budker says, “there are already methods for overcoming small polarization and low detection efficiency, the first two objections to low- or zero-field NMR. By bringing these separate methods together, we can tackle the third objection – no chemical shift – as well. Zero-field NMR may not be such a bad idea after all.”

Net spin orientation can be increased in various ways, collectively known as hyperpolarization. One way to hyperpolarize a sample of hydrogen gas is to change the proportions of parahydrogen and orthohydrogen in it. Like most gases, at normal temperature and pressure each hydrogen molecule consists of two atoms bound together. If the spins of the proton nuclei point in the same direction, it’s orthohydrogen. If the spins point in opposite directions, it’s parahydrogen.

By the mathematics of quantum mechanics, adding up the spin states of the two protons and two electrons in a hydrogen molecule equals three ways for orthohydrogen to reach spin one; parahydrogen can only be spin zero, however. Thus orthohydrogen molecules normally account for three-quarters of hydrogen gas and parahydrogen only one-quarter.

Parahydrogen can be enhanced to 50 percent or even 100 percent using very low temperatures, although the right catalyst must be added or the conversion could take days if not weeks. Then, by chemically reacting spin-zero parahydrogen molecules with an initial chemical, net polarization of the product of the hydrogenation may end up highly polarized. This hyperpolarization can be extended not only to the parts of the molecule directly reacting with the hydrogen, but even to the far corners of large molecules. The Pinenuts, who devised many of the techniques, are masters of parahydrogen production and its hyperpolarization chemistry.

“With a high proportion of parahydrogen you get a terrific degree of polarization,” says Ledbetter. “The catch is, it’s spin zero. It doesn’t have a magnetic moment, so it doesn’t give you a signal! But all is not lost….”

And now for the magic
In low magnetic fields, increasing detection efficiency requires a very different approach, using detectors called magnetometers. In early low-field experiments, magnetometers called SQUID were used (superconducting quantum interference devices). Although exquisitely sensitive, SQUID, like the big magnets used in high-field NMR, must be cryogenically cooled to low temperatures.

Optical-atomic magnetometers are based on a different principle – one that, curiously, is something like NMR in reverse, except that optical-atomic magnetometers measure whole atoms, not just nuclei. Here, an external magnetic field is measured by measuring the spin of the atoms inside the magnetometer’s own vapor cell, typically a thin gas of an alkali metal such as potassium or rubidium. Their spin is influenced by polarizing the atoms with laser light; if there’s even a weak external field, they begin to precess. A second laser beam probes how much they’re precessing and thus just how strong the external field is.

Budker’s group has brought optical-atomic magnetometry to a high pitch by such techniques as extending the “relaxation time,” the time before the polarized vapor loses its polarization. In previous collaborations, the Pines and Budker groups have used magnetometers with NMR and MRI to image the flow of water using only the Earth’s magnetic field or no field at all, to detect hyperpolarized xenon gas (but without analyzing chemical states), and in other applications. The next frontier is chemical analysis.

“No matter how sensitive your detector or how polarized your samples, you can’t detect chemical shifts in a zero field,” Budker says. “But there has always been another signal in NMR that can be used for chemical analysis – it’s just that it is usually so weak compared to chemical shifts, it has been the poor relative in the NMR family. It’s called J-coupling.”

Discovered in 1950 by the NMR pioneer Erwin Hahn and his graduate student, Donald Maxwell, J-coupling provides an interaction pathway between two protons (or other nuclei with spin), which is mediated by their associated electrons. The signature frequencies of these interactions, appearing in the NMR spectrum, can be used to determine the angle between chemical bonds and distances between the nuclei.

“You can even tell how many bonds separate the two spins,” Ledbetter says. “J-coupling reveals all that information.”

The resulting signals are highly specific and indicate just what chemical species is being observed. Moreover, as Hahn saw right away, while the signal can be modified by external magnetic fields, it does not vanish in their absence.

With Ledbetter in the lead, the Budker/Pines collaboration built a magnetometer specifically designed to detect J-coupling at zero magnetic field. Thomas Theis, a graduate student in the Pines group, supplied the parahydrogen and the chemical expertise to take advantage of parahydrogen-induced polarization. Beginning with styrene, a simple hydrocarbon, they measured J-coupling on a series of hydrocarbon derivatives including hexane and hexene, phenylpropene, and dimethyl maleate, important constituents of plastics, petroleum products, even perfumes.

“The first step is to introduce the parahydrogen,” Budker says. “The top of the set-up is a test tube containing the sample solution, with a tube down to the bottom through which the parahydrogen is bubbled.” In the case of styrene, the parahydrogen was taken up to produce ethylbenzene, a specific arrangement of eight carbon atoms and 10 hydrogen atoms.

Immediately below the test tube sits the magnetometer’s alkali vapor cell, a device smaller than a fingernail, microfabricated by Svenja Knappe and John Kitching of the National Institute of Standards and Technology. The vapor cell, which sits on top of a heater, contains rubidium and nitrogen gas through which pump and probe laser beams cross at right angles. The mechanism is surrounded by cylinders of “mu metal,” a nickel-iron alloy that acts as a shield against external magnetic fields, including Earth’s.

Ledbetter’s measurements produced signatures in the spectra which unmistakably identified chemical species and exactly where the polarized protons had been taken up. When styrene was hydrogenated to form ethylbenzene, for example, two atoms from a parahydrogen molecule bound to different atoms of carbon-13 (a scarce but naturally occurring isotope whose nucleus has spin, unlike more abundant carbon-12).

J-coupling signatures are completely different for otherwise identical molecules in which carbon-13 atoms reside in different locations. All of this is seen directly in the results. Says Budker, “When Micah goes into the laboratory, J-coupling is king.”

Of the present football-sized magnetometer and its lasers, Ledbetter says, “We’re already working on a much smaller version of the magnetometer that will be easy to carry into the field.”

Although experiments to date have been performed on molecules that are easily hydrogenated, hyperpolarization with parahydrogen can also be extended to other kinds of molecules. Budker says, “We’re just beginning to develop zero-field NMR, and it’s still too early to say how well we’re going to be able to compete with high-field NMR. But we’ve already shown that we can get clear, highly specific spectra, with a device that has ready potential for doing low-cost, portable chemical analysis.”

Source: Lawrence Berkeley National Laboratory

Join the Discussion
Rate Article: Average 0 out of 5
register or log in to comment on this article!

0 Comments

Add Comment

Text Only 2000 character limit

Page 1 of 1

Research Exchange

Bringing the Cell Image into Focus

Nov 2 2010

Improvements in transmission electron microscope (TEM) technology increase the power of this imaging tool for the study of cell biology.

Finding a Cure for Spinal Cord Injury with On-Demand LIMS

Oct 25 2010

The Miami Project to Cure Paralysis finds an on-demand laboratory information management system (LIMS) helps to accelerate discovery in its HCS projects.

Saving Cells: Image Processing for Improved Viability, Part II: Iterative Deconvolution

Oct 25 2010

3D light microscopy and deconvolution provide a means to investigate 3D structure, providing near-confocal quality images without the temporal requirements or potentially damaging phototoxicity associated with other 3D imaging technologies. This article is Part II in a series regarding viability, resolution improvement, and measurement in fluorescence imaging. Part I focused on spectral unmixing.

Saving Cells: Image Processing for Improved Viability

Sep 22 2010

This article is Part I of a two-part series regarding viability, resolution improvement, and measurement in fluorescence imaging. Part II will focus on deconvolution.

Evaluation of a New Nano-Type UV-Vis Spectrophotometer

Mar 3

Analysis of one- to four-microliter size samples for nucleic acids has become routine in many life science laboratories. However, until now, available instruments require considerable manipulation of the instrument and sample; some require manually recording the data. The user must typically lower and raise the arm manually, then wipe the sample manually from the target after each analysis. And fiberoptics used in some of these instruments are subject to deterioration.

Production of Recombinant Proteins and Monoclonal Antibodies in Hollow Fiber Bioreactors

Jan 25

While well-understood, robust and convenient, classical batch-style 2-D culture on non-porous supports or 3-D suspension culture in other devices are really not very biologically relevant models. Cell culture conditions can affect the quality of the antibody or protein produced.

Selecting Robots for Use in Drug Discovery and Testing

Dec 6 2010

Drug discovery and testing, with their need for speed, repeatability and verification, are ideally suited to benefit from robot automation. It is therefore not surprising that robots have been at the forefront of automation developments in both these areas.

HP Scalable Network Storage Systems for Life Sciences

Sep 13 2010

Life sciences research today is advancing exponentially, each step bringing us closer to the realization of truly personalized medicine–preventive care and treatments designed specifically for each individual. In the near future, PCPGM healthcare researchers expect to be able to use predictive genetic testing to create custom treatment plans for individuals and deliver dramatic improvements over today’s one-size-fits-all approach. But research capabilities are only part of the equation; current storage and operating capacities must also evolve to accommodate ever-expanding amounts of data before the goal of personalized medicine can be realized.

Using the Tecan Genesis Workstation to Automate a Cytometric Bead Array (CBA) Immunoassay

Mar 11 2010

The poster describe the process involved in automating a Cytometric Bead Array (CBA) immunoassay developed to measure relative concentrations of serum antibodies against Tetanus (TT), Sperm Whale Myoglobin (SWM) and Keyhole Limpet Hemocyanin (KLH) in KLH-immunized volunteers.

Ensuring Quality in Assays Performed with Automated Liquid Handlers

Feb 2 2010

The focus of this presentation is to highlight the need of ensuring quality in important assays performed with automated liquid handlers. Nearly all assays performed within a laboratory are volume-dependent. In turn, all concentrations of biological and chemical components in these assays, as well as the associated dilution protocols, are volume-dependent. Because analyte concentration is volume-dependent, an assay’s results might be falsely interpreted if liquid handler variability and inaccuracies are unknown or if the system(s) go unchecked for a long period.

Inkjet System for Protein Crystallography

Feb 1 2010

X-ray crystallography is used routinely by scientists to obtain the three dimensional structure of a biological molecule of interest.Such information can be used to determine how a pharmaceutical interacts with a protein target and what changes might improve functionality. However, the crystallization of macromolecules still remains a serious hindrance in structural determination despite impressive advances in screening methods and technologies.

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Nov 9 2009

Action selection is modulated by external stimuli either directly or via memory retrieval. In a constantly changing environment, animals have evolved attention-like processes to effectively filter the incoming sensory stream. These attention-like processes, in turn, are modulated by memory. The neurobiological nature of how attention, action selection and memory are inter-connected is unknown. We describe here new phenotypes of the memory mutant radish in the fruit fly Drosophila.

Perinatal and Postnatal Expression of Cav1.3 α1D Ca2+ Channel in the Rat Heart

17 hours ago

The novel Cav1.3 (α1D) L-type Ca channel plays a significant role in sino-atrial, atrioventricular nodes function and in atrial fibrillation. However, the characterization of α1D Ca channel during heart development is very limited. We used real-time RT-PCR,...

Oral Abstracts

17 hours ago

Digital Slide Repositories for Publications

19 hours ago

We assessed the contribution of angiotensin-(1-7) [Ang-(1-7)] to captopril-induced cardiovascular protection in spontaneously hypertensive rats (SHR) chronically treated with the nitric oxide synthesis inhibitor L-NAME (SHR-L). L-NAME (80 mg/L) administration...

Standing genetic variation and compensatory evolution in transgenic organisms: a growth-enhanced salmon simulation

May 22

Genetically modified strains usually are generated within defined genetic backgrounds to minimize variation for the engineered characteristic in order to facilitate basic research investigations or for commercial application. However, interactions between...

Prokariotic Cell Collection in Denmark

Nov 6 2009

I would like to know about a prokariotic cell collection in Denmark. Is there a cell bank in this country? I need a Lactobacillus strain for a fermentation assay and this information about the bank is very helpful for me.

Request for Entries

Oct 16 2009

Ask the Experts is your chance to get the answers to questions on applications, materials, methods, processes, and technologies. Email you question to bst_web@advantagemedia.com, and the editors of Bioscience Technology will find an appropriate expert to answer it. Watch this space in the future to see the questions your colleagues are posting.

STAY INFORMED: SUBSCRIBE TO

Magazine and E-mail Newsletters

Loading...
E-mail:   

MULTIMEDIA

Video:

Viewing SureFocus Slides

Jun 11 2010

A demonstration of SureFocus Microscope Slides in the review of AFB Smears. SureFocus Slides are a patent-pending breakthrough in tuberculosis detection, as their fluorescent staining circle remains visible during review, Fluorescence Microscopy.

Podcasts:

Allen Institute for Brain Research

Allen Institute for Brain Research

Oct 14 2009

Discussed in this interview are both the mouse brain project and the human cortex project with an emphasis on the importance of these projects to neuroscience research.

Top Stories and Headlines
EVERYDAY!

FREE Email Newsletter

Information: