Obesity Impairs Muscle Function in Rats

Featured In: Disease Research | Academia News

Tuesday, May 10, 2024

Get daily Bioscience Technology industry top stories and headlines - Sign up now!

newsvine diigo google
slashdot
Share
Loading...

Obesity appears to impair normal muscle function in rats, an observation that could have significant implications for humans, according to Penn State researchers.

"Our findings demonstrate that obesity involves more than accumulating excess fat and carrying excess weight," said Rudolf J. Schilder, American Physiological Society postdoctoral fellow in physiological genomics, Penn State College of Medicine. "We show that, during the development of obesity, skeletal muscles fail to adjust their molecular composition appropriately to the increasing body weight. Consequently, the muscles of obese mammals are not properly 'tuned' to the higher body weight they carry."

Schilder and his colleagues examined whether normal mammalian skeletal muscle perceives the amount of weight it is carrying, and whether it makes physiological adjustments to compensate for more or less weight. They theorized that this ability of muscle may be affected in obesity, as obese mammals typically suffer from reduced mobility and muscle function.

The study, published in a recent issue of the Journal of Experimental Biology, used both healthy and genetically obese rats to determine how the expression of troponin T -- a gene that codes for a protein essential to muscle function -- varied as rats gained weight.

The research shows that the regulation of troponin T expression in a way appropriate for given body weights is impaired in obese rats.

"These results may explain why muscle strength and locomotion are impaired in obese humans, and hence perhaps why it is so difficult to lose excess weight and recover from obesity," said Schilder.

The researchers first demonstrated that troponin T expression varied with body weight during normal growth. Then they artificially increased the body weight of one group of rats by 30 percent using a custom-made weighted vest. Externally applied weight caused a shift in the muscle troponin T expression, matching that of animals whose actual body weight was 30 percent higher. In contrast, troponin T expression did not respond to a similar increase in body weight in the obese rats.

Troponin T expression was examined in the muscles from a total of 68 rats. Nine were genetically obese, 19 were weight loaded and the rest of the rats served as controls. The weight-loaded rats wore the vests for five days.

"Our study is likely to stimulate a quest to determine the pathways and mechanisms that sense body weight and control muscle molecular composition, as this could ultimately provide new therapeutic approaches to alleviate these obesity-associated problems," said Schilder.

Also working on this research were Scot R. Kimball, professor of cellular and molecular physiology; Leonard S. Jefferson, Evan Pugh Professor of cellular and molecular physiology and chair, both at Penn State College of Medicine; and James H. Marden, professor of biology, Penn State Eberly College of Science.

The National Institutes of Health, the National Science Foundation and the American Physiological Society supported this research.

Source: Penn State

Join the Discussion
Rate Article: Average 0 out of 5
register or log in to comment on this article!

0 Comments

Add Comment

Text Only 2000 character limit

Page 1 of 1

Research Exchange

Bringing the Cell Image into Focus

Nov 2 2010

Improvements in transmission electron microscope (TEM) technology increase the power of this imaging tool for the study of cell biology.

Finding a Cure for Spinal Cord Injury with On-Demand LIMS

Oct 25 2010

The Miami Project to Cure Paralysis finds an on-demand laboratory information management system (LIMS) helps to accelerate discovery in its HCS projects.

Saving Cells: Image Processing for Improved Viability, Part II: Iterative Deconvolution

Oct 25 2010

3D light microscopy and deconvolution provide a means to investigate 3D structure, providing near-confocal quality images without the temporal requirements or potentially damaging phototoxicity associated with other 3D imaging technologies. This article is Part II in a series regarding viability, resolution improvement, and measurement in fluorescence imaging. Part I focused on spectral unmixing.

Saving Cells: Image Processing for Improved Viability

Sep 22 2010

This article is Part I of a two-part series regarding viability, resolution improvement, and measurement in fluorescence imaging. Part II will focus on deconvolution.

Evaluation of a New Nano-Type UV-Vis Spectrophotometer

Mar 3

Analysis of one- to four-microliter size samples for nucleic acids has become routine in many life science laboratories. However, until now, available instruments require considerable manipulation of the instrument and sample; some require manually recording the data. The user must typically lower and raise the arm manually, then wipe the sample manually from the target after each analysis. And fiberoptics used in some of these instruments are subject to deterioration.

Production of Recombinant Proteins and Monoclonal Antibodies in Hollow Fiber Bioreactors

Jan 25

While well-understood, robust and convenient, classical batch-style 2-D culture on non-porous supports or 3-D suspension culture in other devices are really not very biologically relevant models. Cell culture conditions can affect the quality of the antibody or protein produced.

Selecting Robots for Use in Drug Discovery and Testing

Dec 6 2010

Drug discovery and testing, with their need for speed, repeatability and verification, are ideally suited to benefit from robot automation. It is therefore not surprising that robots have been at the forefront of automation developments in both these areas.

HP Scalable Network Storage Systems for Life Sciences

Sep 13 2010

Life sciences research today is advancing exponentially, each step bringing us closer to the realization of truly personalized medicine–preventive care and treatments designed specifically for each individual. In the near future, PCPGM healthcare researchers expect to be able to use predictive genetic testing to create custom treatment plans for individuals and deliver dramatic improvements over today’s one-size-fits-all approach. But research capabilities are only part of the equation; current storage and operating capacities must also evolve to accommodate ever-expanding amounts of data before the goal of personalized medicine can be realized.

Using the Tecan Genesis Workstation to Automate a Cytometric Bead Array (CBA) Immunoassay

Mar 11 2010

The poster describe the process involved in automating a Cytometric Bead Array (CBA) immunoassay developed to measure relative concentrations of serum antibodies against Tetanus (TT), Sperm Whale Myoglobin (SWM) and Keyhole Limpet Hemocyanin (KLH) in KLH-immunized volunteers.

Ensuring Quality in Assays Performed with Automated Liquid Handlers

Feb 2 2010

The focus of this presentation is to highlight the need of ensuring quality in important assays performed with automated liquid handlers. Nearly all assays performed within a laboratory are volume-dependent. In turn, all concentrations of biological and chemical components in these assays, as well as the associated dilution protocols, are volume-dependent. Because analyte concentration is volume-dependent, an assay’s results might be falsely interpreted if liquid handler variability and inaccuracies are unknown or if the system(s) go unchecked for a long period.

Inkjet System for Protein Crystallography

Feb 1 2010

X-ray crystallography is used routinely by scientists to obtain the three dimensional structure of a biological molecule of interest.Such information can be used to determine how a pharmaceutical interacts with a protein target and what changes might improve functionality. However, the crystallization of macromolecules still remains a serious hindrance in structural determination despite impressive advances in screening methods and technologies.

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Nov 9 2009

Action selection is modulated by external stimuli either directly or via memory retrieval. In a constantly changing environment, animals have evolved attention-like processes to effectively filter the incoming sensory stream. These attention-like processes, in turn, are modulated by memory. The neurobiological nature of how attention, action selection and memory are inter-connected is unknown. We describe here new phenotypes of the memory mutant radish in the fruit fly Drosophila.

Community-based applied research with latino immigrant families: informing practice and research according to ethical and social justice principles.

1 hour ago

This manuscript describes the implementation of two community-based programs of research with Latino immigrant populations exposed to intense contextual challenges. We provide background on our program of research and specific implementation of an evidence-based...

Determinants of change in physical activity in children and adolescents a systematic review.

15 hours ago

Data are available on correlates of physical activity in children and adolescents, less is known about the determinants of change. This review aims to systematically review the published evidence regarding determinants of change in physical activity in children...

Prokariotic Cell Collection in Denmark

Nov 6 2009

I would like to know about a prokariotic cell collection in Denmark. Is there a cell bank in this country? I need a Lactobacillus strain for a fermentation assay and this information about the bank is very helpful for me.

Request for Entries

Oct 16 2009

Ask the Experts is your chance to get the answers to questions on applications, materials, methods, processes, and technologies. Email you question to bst_web@advantagemedia.com, and the editors of Bioscience Technology will find an appropriate expert to answer it. Watch this space in the future to see the questions your colleagues are posting.

STAY INFORMED: SUBSCRIBE TO

Magazine and E-mail Newsletters

Loading...
E-mail:   

MULTIMEDIA

Video:

Viewing SureFocus Slides

Jun 11 2010

A demonstration of SureFocus Microscope Slides in the review of AFB Smears. SureFocus Slides are a patent-pending breakthrough in tuberculosis detection, as their fluorescent staining circle remains visible during review, Fluorescence Microscopy.

Podcasts:

Allen Institute for Brain Research

Allen Institute for Brain Research

Oct 14 2009

Discussed in this interview are both the mouse brain project and the human cortex project with an emphasis on the importance of these projects to neuroscience research.

Top Stories and Headlines
EVERYDAY!

FREE Email Newsletter

Information: