Engineer To Launch Bacteria Into Space Aboard the Final Mission of Space Shuttle Atlantis

Featured In: Disease Research | Academia News

Monday, June 27, 2024

See today's top life science stories and headlines - Sign up now!

newsvine diigo google
slashdot
Share
Loading...

There will be some very interesting passengers on the final mission of the NASA Space Shuttle Atlantis scheduled to launch July 8, 2011: thousands of bacteria.

Cynthia Collins, assistant professor of chemical and biological engineering at Rensselaer, is leading a series of experiments called Micro-2A that will be aboard the shuttle during its scheduled 12-day mission. The research seeks to understand how microgravity changes the way potentially dangerous bacteria grows. In particular, the research will examine how they form difficult-to-kill colonies called biofilms. The research has important implications for protecting astronauts while they are in space in enclosed and difficult-to-clean spaces, such as the International Space Station, or during extended space missions deeper into our solar system. It also provides new information in the fight against ever-more virulent bacterial infections such as staph, food poisoning, sepsis, and pneumonia.

Devices similar to these will be sent about the Space Shuttle Atlantis. (Source: Rensselaer Polytechnic Institute)

Partnering with Collins on the project are nanobiotechnology expert Jonathan Dordick, the Howard P. Isermann Professor of Chemical and Biological Engineering at Rensselaer and director of the Rensselaer Center for Biotechnology and Interdisciplinary Studies, and thin films expert Joel Plawsky, professor in the Department of Chemical and Biological Engineering. The NASA Ames Research Center is funding the experiment.

This is the second time that Collins’ research will be included on the shuttle. Her research on bacteria was also aboard the shuttle mission that launched May 14, 2010. Collins has been analyzing the results of this previous work and will use this new series of experiments to test some of the results she has seen.

“We are clearly seeing altered biofilm formation during space flight,” she said. “There are some clear differences between the amount of biofilm formed in normal gravity and microgravity. These differences also appear to be organism dependent, with different organisms responding very differently to the environment in space.”

The bacteria that Collins will include are Pseudomonas aeruginosa and Staphylococcus aureus. These bacteria are responsible for more hospital-acquired infections than any other, according to Collins. The Center for Disease Control places hospital-acquired infections such as those caused by these bacteria as the fourth leading cause of death in the United States.

Biofilms are complex, three-dimensional microbial communities. Most biofilms, including those found in the human body, are harmless. Some biofilms, however, have been shown to be associated with disease. Researchers like Collins are discovering that the bacteria within these colonies have very different properties, including increased resistance to antimicrobials, compared with bacteria not encased in a biofilm.

Collins and her team will send up 16 devices, called Group Activation Packs (GAPs) and each containing eight vials of bacteria, aboard the shuttle. The GAPs and other hardware used by the Collins and her team were developed by BioServe Space Technologies. While in orbit, astronauts will begin the experiment by manipulating the sealed GAPs and combining the bacteria with nutrients and a surface on which they can form biofilms. At the same time, Collins will perform the same actions with identical GAPs on Earth at the Kennedy Space Center in Florida. After the shuttle returns, her team will compare the resulting biofilms to see how the behavior of bacteria and development of biofilms in microgravity differs from the Earth-bound control group.

In addition, the research team will also test if a newly developed, antimicrobial surface — developed by Dordick at Rensselaer — can help slow the growth of methicillin resistant Staphylococcus aureus, or MRSA, on Earth and in microgravity. Actual MRSA, the bacteria responsible for antibiotic-resistant infections, will not be used for the safety of those on board. A different and safer strain of bacteria with similar properties will serve as a proxy. The new surface developed by Dordick utilizes an enzyme found in nature and kills 100 percent of MRSA within 20 minutes of contact.

The new technology marries carbon nanotubes with lysostaphin, a naturally occurring enzyme used by non-pathogenic strains of staph bacteria to defend against staph growth. The resulting nanotube-enzyme biomaterial can be mixed with any number of surface finishes. In tests, it was mixed with ordinary latex house paint. More information on the surface can be found at: http://news.rpi.edu/update.do?artcenterkey=2759 .

Astronauts have been shown to have an increased susceptibility to infection while in microgravity, making a deeper understanding of how these bacteria behave in space of particular importance, according to Collins. In addition to its importance in planning future space missions, the research also has important applications here on Earth. The conditions in space are similar to those produced within the human body on several levels. Understanding how bacteria thrive in space may also provide insight into how they develop once they enter the human body.

Source: Rensselaer Polytechnic Institute

Join the Discussion
Rate Article: Average 0 out of 5
register or log in to comment on this article!

0 Comments

Add Comment

Text Only 2000 character limit

Page 1 of 1

Research Exchange

Bringing the Cell Image into Focus

Nov 2 2010

Improvements in transmission electron microscope (TEM) technology increase the power of this imaging tool for the study of cell biology.

Finding a Cure for Spinal Cord Injury with On-Demand LIMS

Oct 25 2010

The Miami Project to Cure Paralysis finds an on-demand laboratory information management system (LIMS) helps to accelerate discovery in its HCS projects.

Saving Cells: Image Processing for Improved Viability, Part II: Iterative Deconvolution

Oct 25 2010

3D light microscopy and deconvolution provide a means to investigate 3D structure, providing near-confocal quality images without the temporal requirements or potentially damaging phototoxicity associated with other 3D imaging technologies. This article is Part II in a series regarding viability, resolution improvement, and measurement in fluorescence imaging. Part I focused on spectral unmixing.

Saving Cells: Image Processing for Improved Viability

Sep 22 2010

This article is Part I of a two-part series regarding viability, resolution improvement, and measurement in fluorescence imaging. Part II will focus on deconvolution.

Evaluation of a New Nano-Type UV-Vis Spectrophotometer

Mar 3

Analysis of one- to four-microliter size samples for nucleic acids has become routine in many life science laboratories. However, until now, available instruments require considerable manipulation of the instrument and sample; some require manually recording the data. The user must typically lower and raise the arm manually, then wipe the sample manually from the target after each analysis. And fiberoptics used in some of these instruments are subject to deterioration.

Production of Recombinant Proteins and Monoclonal Antibodies in Hollow Fiber Bioreactors

Jan 25

While well-understood, robust and convenient, classical batch-style 2-D culture on non-porous supports or 3-D suspension culture in other devices are really not very biologically relevant models. Cell culture conditions can affect the quality of the antibody or protein produced.

Selecting Robots for Use in Drug Discovery and Testing

Dec 6 2010

Drug discovery and testing, with their need for speed, repeatability and verification, are ideally suited to benefit from robot automation. It is therefore not surprising that robots have been at the forefront of automation developments in both these areas.

HP Scalable Network Storage Systems for Life Sciences

Sep 13 2010

Life sciences research today is advancing exponentially, each step bringing us closer to the realization of truly personalized medicine–preventive care and treatments designed specifically for each individual. In the near future, PCPGM healthcare researchers expect to be able to use predictive genetic testing to create custom treatment plans for individuals and deliver dramatic improvements over today’s one-size-fits-all approach. But research capabilities are only part of the equation; current storage and operating capacities must also evolve to accommodate ever-expanding amounts of data before the goal of personalized medicine can be realized.

Using the Tecan Genesis Workstation to Automate a Cytometric Bead Array (CBA) Immunoassay

Mar 11 2010

The poster describe the process involved in automating a Cytometric Bead Array (CBA) immunoassay developed to measure relative concentrations of serum antibodies against Tetanus (TT), Sperm Whale Myoglobin (SWM) and Keyhole Limpet Hemocyanin (KLH) in KLH-immunized volunteers.

Ensuring Quality in Assays Performed with Automated Liquid Handlers

Feb 2 2010

The focus of this presentation is to highlight the need of ensuring quality in important assays performed with automated liquid handlers. Nearly all assays performed within a laboratory are volume-dependent. In turn, all concentrations of biological and chemical components in these assays, as well as the associated dilution protocols, are volume-dependent. Because analyte concentration is volume-dependent, an assay’s results might be falsely interpreted if liquid handler variability and inaccuracies are unknown or if the system(s) go unchecked for a long period.

Inkjet System for Protein Crystallography

Feb 1 2010

X-ray crystallography is used routinely by scientists to obtain the three dimensional structure of a biological molecule of interest.Such information can be used to determine how a pharmaceutical interacts with a protein target and what changes might improve functionality. However, the crystallization of macromolecules still remains a serious hindrance in structural determination despite impressive advances in screening methods and technologies.

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Nov 9 2009

Action selection is modulated by external stimuli either directly or via memory retrieval. In a constantly changing environment, animals have evolved attention-like processes to effectively filter the incoming sensory stream. These attention-like processes, in turn, are modulated by memory. The neurobiological nature of how attention, action selection and memory are inter-connected is unknown. We describe here new phenotypes of the memory mutant radish in the fruit fly Drosophila.

Evidence-based treatment of open ankle fractures

6 hours ago

Fractures of the ankle are fairly common injuries. Open ankle fractures are much less common and associated with severe injuries to surrounding tissues. We have performed a systematic review of the literature concerning the clinical results and complication...

The impact of pharmacist interventions on osteoporosis management: a systematic review

6 hours ago

We completed a systematic review of the literature to examine the impact of pharmacist interventions in improving osteoporosis management. Results from randomized controlled trials suggest that pharmacist interventions may improve bone mineral density testing...

Prokariotic Cell Collection in Denmark

Nov 6 2009

I would like to know about a prokariotic cell collection in Denmark. Is there a cell bank in this country? I need a Lactobacillus strain for a fermentation assay and this information about the bank is very helpful for me.

Request for Entries

Oct 16 2009

Ask the Experts is your chance to get the answers to questions on applications, materials, methods, processes, and technologies. Email you question to bst_web@advantagemedia.com, and the editors of Bioscience Technology will find an appropriate expert to answer it. Watch this space in the future to see the questions your colleagues are posting.

STAY INFORMED: SUBSCRIBE TO

Magazine and E-mail Newsletters

Loading...
E-mail:   
Loading...

Free Life Science Industry
Subscriptions

Magazine

wireless week

Newsletters

newsletters

Sign up now



MULTIMEDIA

Video:

Viewing SureFocus Slides

Jun 11 2010

A demonstration of SureFocus Microscope Slides in the review of AFB Smears. SureFocus Slides are a patent-pending breakthrough in tuberculosis detection, as their fluorescent staining circle remains visible during review, Fluorescence Microscopy.

Podcasts:

Allen Institute for Brain Research

Allen Institute for Brain Research

Oct 14 2009

Discussed in this interview are both the mouse brain project and the human cortex project with an emphasis on the importance of these projects to neuroscience research.

Top Stories and Headlines
EVERY DAY!

FREE Email Newsletter

Information: