Model Helps Pinpoint Cyanobacterial Genes that Capture the Sun’s Energy

Featured In: Academia News

Friday, June 24, 2024

See today's top life science stories and headlines - Sign up now!

newsvine diigo google
slashdot
Share
Loading...

A new computer model of blue-green algae can predict which of the organism's genes are central to capturing energy from sunlight and other critical processes. Described in a paper published in the journal Molecular BioSystems, the model could advance efforts to produce biofuel and other energy sources from blue-green algae, known as cyanobacteria. Researchers from the Department of Energy's Pacific Northwest National Laboratory, Washington University in St. Louis and Purdue University developed the model, which was made for the single-celled marine cyanobacterium Cyanothece 51142.

"Our model is the first of its kind for cyanobacteria," said the paper's lead author, PNNL computational biologist Jason McDermott. "Previous models have only zoomed in on specific aspects of cyanobacteria. Ours looks at the entire organism to find out what makes Cyanothece tick."

The research was funded by EMSL, the Department of Energy's Environmental Molecular Sciences Laboratory, a national user facility at PNNL, as part of EMSL's Membrane Biology Grand Challenge. The challenge encouraged scientists to take a systems biology approach to understand the network of genes and proteins that are responsible for photosynthesis and nitrogen fixation in cyanobacteria.

This is the single-celled marine cyanobacterium Cyanothece 51142 captured by a light microscope. (Source: Washington University in St. Louis)

Cyanobacteria are noteworthy because they share qualities with both plants and microbes. They use the sun's energy to make sugar via photosynthesis like plants. And, like microbes, cyanobacteria also convert atmospheric nitrogen — an important nutrient for many organisms — into accessible forms, a process called nitrogen fixation.

Working day and night
Many cyanobacteria physically separate their photosynthetic and nitrogen fixation activities in different cells. But Cyanothece is unusual because the same cell switches between these functions every 12 hours. It makes sugar when there's daylight and then spends the night breaking down that sugar to fix nitrogen and to produce other compounds.

"By understanding which genes trigger Cyanothece to start and stop photosynthesis and other important energy production functions, we may be able to better use cyanobacteria to make renewable energy," McDermott said. Genes serve as the blueprint for the creation of proteins, the cell's workers.

Mapping a gene's purpose
Researchers — many of whom also worked on the model — sequenced Cyanothece's genome in 2008. But knowing how many genes an organism has doesn't necessarily explain what those genes do. So scientists kept studying Cyanothece in the lab. By making a simple linear graph of when different genes were expressed over a 24-hour cycle, McDermott and his co-authors saw that many genes were expressed at similar levels and at similar times. The team hypothesized that such genes were involved in similar processes, such as photosynthesis or nitrogen fixation.

But there isn't always a straight line between one gene being turned on and a cellular process starting. Sometimes a series of genes have to be turned on or off before a process can begin. To better understand these complex relationships, McDermott crafted a circular graph that illustrates how genes are expressed around the clock. Each point on the graph represented a gene being expressed at a particular time. Lines connecting the dots demonstrated how some related genes are expressed one after another in a series.

Points of control
The wreath-like graph revealed a complicated, intertwined network of Cyanothece genes. In some cases, different series of related genes expressed one after another intersected at the same place, at an individual gene or a handful of genes. It appeared that the genes at these intersections serve as bottlenecks, or control points, for the subsequent expression of other genes down the road. The team predicted that if the bottleneck genes were removed, expression of the downstream genes would be affected. Amazingly, 11 of the 25 top bottlenecks identified were genes or proteins whose specific role in Cyanothece weren't previously known.

The next challenge was to figure out how each of these bottlenecks affects Cyanothece's daily life. The team could have done experiments in the lab, removing each of these bottlenecks one at the time from the organism's genome to see what happened. But such experiments can be time-consuming. Seeking a simpler, more methodical solution, the authors built a computer model that would predict the roles of individual genes in Cyanothece.

Central players
They started with a previous whole-organism modeling approach called the Inferelator, which was developed at the Institute for Systems Biology in Seattle for a different microorganism. The team adapted the Inferelator's code to compute the cyclic nature of the connections between Cyanothece's genes. They also added code to improve their ability to test the model's accuracy. When looking at low-oxygen conditions similar to those encountered by Cyanothece at night, the model predicted gene expression levels correctly the equivalent of about 75 percent of the time, in comparison to actual measurements.

The model predicted the roles that a number of bottleneck genes play for Cyanothece. For example, the model predicted that the patB gene is a bottleneck for the production of nitrogenase, the enzyme needed to fix nitrogen. If patB were removed from Cyanothece, the model predicted that nitrogenase production could decrease by as much as 80 percent. The model also identified an unnamed gene, currently labeled as gene cce_0678, as being key to the cyanobacterium's production of RuBisCO, a well-known enzyme that's important in photosynthesis. Without cce_0678, the model predicted RuBisCO production would decrease by about 60 percent.

Next, the research team will seek to further validate the model with lab experiments. They'll remove or increase the expression of specific genes predicted to be bottlenecks to test whether or not they impact Cyanothece's energy production as the model predicted. The researchers will also use the model to examine the complex interactions between important processes in cyanobacteria, such as photosynthesis and nitrogen fixation.

"This model can serve as a first step toward a complete simulation of Cyanothece," McDermott said. "Knowing the detailed inner workings of cyanobacteria could be used to design efficient methods to make bioenergy and manage the carbon cycle, including the greenhouse gas carbon dioxide."

Source: Pacific Northwest National Laboratory

Join the Discussion
Rate Article: Average 0 out of 5
register or log in to comment on this article!

0 Comments

Add Comment

Text Only 2000 character limit

Page 1 of 1

Research Exchange

Bringing the Cell Image into Focus

Nov 2 2010

Improvements in transmission electron microscope (TEM) technology increase the power of this imaging tool for the study of cell biology.

Finding a Cure for Spinal Cord Injury with On-Demand LIMS

Oct 25 2010

The Miami Project to Cure Paralysis finds an on-demand laboratory information management system (LIMS) helps to accelerate discovery in its HCS projects.

Saving Cells: Image Processing for Improved Viability, Part II: Iterative Deconvolution

Oct 25 2010

3D light microscopy and deconvolution provide a means to investigate 3D structure, providing near-confocal quality images without the temporal requirements or potentially damaging phototoxicity associated with other 3D imaging technologies. This article is Part II in a series regarding viability, resolution improvement, and measurement in fluorescence imaging. Part I focused on spectral unmixing.

Saving Cells: Image Processing for Improved Viability

Sep 22 2010

This article is Part I of a two-part series regarding viability, resolution improvement, and measurement in fluorescence imaging. Part II will focus on deconvolution.

Evaluation of a New Nano-Type UV-Vis Spectrophotometer

Mar 3

Analysis of one- to four-microliter size samples for nucleic acids has become routine in many life science laboratories. However, until now, available instruments require considerable manipulation of the instrument and sample; some require manually recording the data. The user must typically lower and raise the arm manually, then wipe the sample manually from the target after each analysis. And fiberoptics used in some of these instruments are subject to deterioration.

Production of Recombinant Proteins and Monoclonal Antibodies in Hollow Fiber Bioreactors

Jan 25

While well-understood, robust and convenient, classical batch-style 2-D culture on non-porous supports or 3-D suspension culture in other devices are really not very biologically relevant models. Cell culture conditions can affect the quality of the antibody or protein produced.

Selecting Robots for Use in Drug Discovery and Testing

Dec 6 2010

Drug discovery and testing, with their need for speed, repeatability and verification, are ideally suited to benefit from robot automation. It is therefore not surprising that robots have been at the forefront of automation developments in both these areas.

HP Scalable Network Storage Systems for Life Sciences

Sep 13 2010

Life sciences research today is advancing exponentially, each step bringing us closer to the realization of truly personalized medicine–preventive care and treatments designed specifically for each individual. In the near future, PCPGM healthcare researchers expect to be able to use predictive genetic testing to create custom treatment plans for individuals and deliver dramatic improvements over today’s one-size-fits-all approach. But research capabilities are only part of the equation; current storage and operating capacities must also evolve to accommodate ever-expanding amounts of data before the goal of personalized medicine can be realized.

Using the Tecan Genesis Workstation to Automate a Cytometric Bead Array (CBA) Immunoassay

Mar 11 2010

The poster describe the process involved in automating a Cytometric Bead Array (CBA) immunoassay developed to measure relative concentrations of serum antibodies against Tetanus (TT), Sperm Whale Myoglobin (SWM) and Keyhole Limpet Hemocyanin (KLH) in KLH-immunized volunteers.

Ensuring Quality in Assays Performed with Automated Liquid Handlers

Feb 2 2010

The focus of this presentation is to highlight the need of ensuring quality in important assays performed with automated liquid handlers. Nearly all assays performed within a laboratory are volume-dependent. In turn, all concentrations of biological and chemical components in these assays, as well as the associated dilution protocols, are volume-dependent. Because analyte concentration is volume-dependent, an assay’s results might be falsely interpreted if liquid handler variability and inaccuracies are unknown or if the system(s) go unchecked for a long period.

Inkjet System for Protein Crystallography

Feb 1 2010

X-ray crystallography is used routinely by scientists to obtain the three dimensional structure of a biological molecule of interest.Such information can be used to determine how a pharmaceutical interacts with a protein target and what changes might improve functionality. However, the crystallization of macromolecules still remains a serious hindrance in structural determination despite impressive advances in screening methods and technologies.

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Nov 9 2009

Action selection is modulated by external stimuli either directly or via memory retrieval. In a constantly changing environment, animals have evolved attention-like processes to effectively filter the incoming sensory stream. These attention-like processes, in turn, are modulated by memory. The neurobiological nature of how attention, action selection and memory are inter-connected is unknown. We describe here new phenotypes of the memory mutant radish in the fruit fly Drosophila.

Modulation of chop-dependent DR5 expression by nelfinavir sensitizes glioblastoma multiforme cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)

Jun 26

Human glioblastoma multiforme cells demonstrate varying levels of sensitivity to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Endoplasmic reticulum (ER) stress has been shown to trigger cell death through apoptosis. We...

Enhanced epithelial-mesenchymal transition-like phenotype in N-acetylglucosaminyltransferase V transgenic mouse skin promotes wound healing

Jun 24

N-Acetylglucosaminyltransferase-V (GnT-V) catalyzes the β1,6 branching of N-acetylglucosamine on N-glycans. GnT-V expression is elevated during malignant transformation in various types of cancer; however, the mechanism by which GnT-V promotes cancer progression...

Assembly and Sorting of the Tonoplast Potassium Channel AtTPK1 and Its Turnover by Internalization into the Vacuole

Jun 24

The assembly, sorting signals and turnover of the tonoplast potassium channel AtTPK1 of Arabidopsis thaliana were studied. We used transgenic Arabidopsis expressing a TPK1-GFP fusion or protoplasts transiently transformed with chimeric constructs based on domain...

Prokariotic Cell Collection in Denmark

Nov 6 2009

I would like to know about a prokariotic cell collection in Denmark. Is there a cell bank in this country? I need a Lactobacillus strain for a fermentation assay and this information about the bank is very helpful for me.

Request for Entries

Oct 16 2009

Ask the Experts is your chance to get the answers to questions on applications, materials, methods, processes, and technologies. Email you question to bst_web@advantagemedia.com, and the editors of Bioscience Technology will find an appropriate expert to answer it. Watch this space in the future to see the questions your colleagues are posting.

STAY INFORMED: SUBSCRIBE TO

Magazine and E-mail Newsletters

Loading...
E-mail:   
Loading...

Free Life Science Industry
Subscriptions

Magazine

wireless week

Newsletters

newsletters

Sign up now



MULTIMEDIA

Video:

Viewing SureFocus Slides

Jun 11 2010

A demonstration of SureFocus Microscope Slides in the review of AFB Smears. SureFocus Slides are a patent-pending breakthrough in tuberculosis detection, as their fluorescent staining circle remains visible during review, Fluorescence Microscopy.

Podcasts:

Allen Institute for Brain Research

Allen Institute for Brain Research

Oct 14 2009

Discussed in this interview are both the mouse brain project and the human cortex project with an emphasis on the importance of these projects to neuroscience research.

Top Stories and Headlines
EVERY DAY!

FREE Email Newsletter

Information: