Loading...

Daily news and top headlines for life science research professionals

FREE Email Newsletter View Sample


Scientists Discover How to Design Drugs that Could Target Particular Nerve Cells

Featured In: Academia News | Neuroscience

Friday, November 11, 2023

See today's top life science stories and headlines - Sign up now!

newsvine diigo google
slashdot
Share
Loading...

The future of drug design lies in developing therapies that can target specific cellular processes without causing adverse reactions in other areas of the nervous system. Scientists at the Universities of Bristol and Liège in Belgium have discovered how to design drugs to target specific areas of the brain.

The research, led by Professor Neil Marrion at Bristol’s School of Physiology and Pharmacology and published in this week’s Proceedings of National Academy of Sciences USA (PNAS), will enable the design of more effective drug compounds to enhance nerve activity in specific nerves.

The team has been working on a subtype of ion channel called SK channels. Ion channels are proteins that act as pores in a cell membrane and help control the excitability of nerves.

Rather like an electrical circuit, ion channels work by allowing the flow of ‘charged’ potassium, sodium and calcium ions to enter or exit cell membranes through a network of pores formed by the channels, a subtype of which is the SK channel family.

The researchers have been using a natural toxin found in bee venom, called apamin, known for its ability to block different types of SK channel. SK channels enable a flow of potassium ions in and out of nerve cells that controls activity. The researchers have taken advantage of apamin being able to block one subtype of SK channel better than the others, to identify how three subtype SK channels [SK1-3] can be selectively blocked.

Neil Marrion, Professor of Neuroscience at the University, said: “The problem with developing drugs to target cellular processes has been that many cell types distributed throughout the body might all have the same ion channels. SK channels are also distributed throughout the brain, but it is becoming obvious that these channels might be made of more than one type of SK channel subunit. It is likely that different nerves have SK channels made from different subunits. This would mean that developing a drug to block a channel made of only one SK channel protein will not be therapeutically useful, but knowing that the channels are comprised of multiple SK subunits will be the key.”

The study’s findings have identified how SK channels are blocked by apamin and other ligands. Importantly, it shows how channels are folded to allow a drug to bind. This will enable drugs to be designed to block those SK channels that are made of more than one type of SK channel subunit, to target the symptoms of dementia and depression more effectively.

Vincent Seutin, one co-author of the paper, said: “Our study also shows a difference in the way apamin and nonpeptidic (potentially a useful drug) ligands interact with the channel. This may have important implications in terms of drug design.”

The Belgian Science Policy-funded research is part of a collaborative project between the University of Bristol and the University of Liège in Belgium.

Source: University of Bristol

Join the Discussion
Rate Article: Average 0 out of 5
register or log in to comment on this article!

0 Comments

Add Comment

Text Only 2000 character limit

Page 1 of 1

Research Exchange

How to Build an Integrated Microscopy System for Live Cell Mechanotransduction Studies

How to Build an Integrated Microscopy System for Live Cell Mechanotransduction Studies

Aug 2

A new integrated microscopy system allows scientists to simultaneously stimulate and image live cell response in real-time.

Tips for Reducing Static Electricity

Tips for Reducing Static Electricity

Aug 1

Static electricity can affect automated instrumentation within the lab.

Microscopes for the Non-Microscopist: Multidisciplinary Research Using Optical Imaging

Microscopes for the Non-Microscopist: Multidisciplinary Research Using Optical Imaging

Jul 5

High quality microscopy is increasingly used by scientists in new areas of research.

Bringing the Cell Image into Focus

Nov 2 2010

Improvements in transmission electron microscope (TEM) technology increase the power of this imaging tool for the study of cell biology.

Evaluation of a New Nano-Type UV-Vis Spectrophotometer

Mar 3

Analysis of one- to four-microliter size samples for nucleic acids has become routine in many life science laboratories. However, until now, available instruments require considerable manipulation of the instrument and sample; some require manually recording the data. The user must typically lower and raise the arm manually, then wipe the sample manually from the target after each analysis. And fiberoptics used in some of these instruments are subject to deterioration.

Production of Recombinant Proteins and Monoclonal Antibodies in Hollow Fiber Bioreactors

Jan 25

While well-understood, robust and convenient, classical batch-style 2-D culture on non-porous supports or 3-D suspension culture in other devices are really not very biologically relevant models. Cell culture conditions can affect the quality of the antibody or protein produced.

Selecting Robots for Use in Drug Discovery and Testing

Dec 6 2010

Drug discovery and testing, with their need for speed, repeatability and verification, are ideally suited to benefit from robot automation. It is therefore not surprising that robots have been at the forefront of automation developments in both these areas.

HP Scalable Network Storage Systems for Life Sciences

Sep 13 2010

Life sciences research today is advancing exponentially, each step bringing us closer to the realization of truly personalized medicine–preventive care and treatments designed specifically for each individual. In the near future, PCPGM healthcare researchers expect to be able to use predictive genetic testing to create custom treatment plans for individuals and deliver dramatic improvements over today’s one-size-fits-all approach. But research capabilities are only part of the equation; current storage and operating capacities must also evolve to accommodate ever-expanding amounts of data before the goal of personalized medicine can be realized.

Using the Tecan Genesis Workstation to Automate a Cytometric Bead Array (CBA) Immunoassay

Mar 11 2010

The poster describe the process involved in automating a Cytometric Bead Array (CBA) immunoassay developed to measure relative concentrations of serum antibodies against Tetanus (TT), Sperm Whale Myoglobin (SWM) and Keyhole Limpet Hemocyanin (KLH) in KLH-immunized volunteers.

Ensuring Quality in Assays Performed with Automated Liquid Handlers

Feb 2 2010

The focus of this presentation is to highlight the need of ensuring quality in important assays performed with automated liquid handlers. Nearly all assays performed within a laboratory are volume-dependent. In turn, all concentrations of biological and chemical components in these assays, as well as the associated dilution protocols, are volume-dependent. Because analyte concentration is volume-dependent, an assay’s results might be falsely interpreted if liquid handler variability and inaccuracies are unknown or if the system(s) go unchecked for a long period.

Inkjet System for Protein Crystallography

Feb 1 2010

X-ray crystallography is used routinely by scientists to obtain the three dimensional structure of a biological molecule of interest.Such information can be used to determine how a pharmaceutical interacts with a protein target and what changes might improve functionality. However, the crystallization of macromolecules still remains a serious hindrance in structural determination despite impressive advances in screening methods and technologies.

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Nov 9 2009

Action selection is modulated by external stimuli either directly or via memory retrieval. In a constantly changing environment, animals have evolved attention-like processes to effectively filter the incoming sensory stream. These attention-like processes, in turn, are modulated by memory. The neurobiological nature of how attention, action selection and memory are inter-connected is unknown. We describe here new phenotypes of the memory mutant radish in the fruit fly Drosophila.

Genome Sequence of Pseudomonas putida Strain B6-2, a Superdegrader of Polycyclic Aromatic Hydrocarbons and Dioxin-Like Compounds.

Nov 11

Pseudomonas putida strain B6-2 can efficiently degrade environmental pollutants/toxicants, such as polycyclic aromatic hydrocarbons and dioxin-like compounds, and has unique tolerance to organic solvents. Here, we present a 6.24-Mb draft genome sequence of B6-2,...

Draft Genome Sequence of Dietzia alimentaria 72T, Belonging to the Family Dietziaceae, Isolated from a Traditional Korean Food.

Nov 11

Actinobacterial strain 72(T), named Dietzia alimentaria, which belongs to the family Dietziaceae, was isolated from a traditional Korean food made from clams. The draft genome sequence of D. alimentaria 72(T) contains 3,352,817 bp, with a G+C content of 67.34%. ...

Prokariotic Cell Collection in Denmark

Nov 6 2009

I would like to know about a prokariotic cell collection in Denmark. Is there a cell bank in this country? I need a Lactobacillus strain for a fermentation assay and this information about the bank is very helpful for me.

Request for Entries

Oct 16 2009

Ask the Experts is your chance to get the answers to questions on applications, materials, methods, processes, and technologies. Email you question to bst_web@advantagemedia.com, and the editors of Bioscience Technology will find an appropriate expert to answer it. Watch this space in the future to see the questions your colleagues are posting.

STAY INFORMED: SUBSCRIBE TO

Magazine and E-mail Newsletters

Loading...
E-mail:   
Loading...

Free Life Science Industry
Subscriptions

Magazine

wireless week

Newsletters

newsletters

Sign up now



MULTIMEDIA

Video:

Viewing SureFocus Slides

Jun 11 2010

A demonstration of SureFocus Microscope Slides in the review of AFB Smears. SureFocus Slides are a patent-pending breakthrough in tuberculosis detection, as their fluorescent staining circle remains visible during review, Fluorescence Microscopy.

Podcasts:

Allen Institute for Brain Research

Allen Institute for Brain Research

Oct 14 2009

Discussed in this interview are both the mouse brain project and the human cortex project with an emphasis on the importance of these projects to neuroscience research.

Top Stories and Headlines
EVERY DAY!

FREE Email Newsletter

Information: