Loading...

Daily news and top headlines for life science research professionals

FREE Email Newsletter View Sample


Scientists Identify Key Mechanism Involved in Type 2 Diabetes

Featured In: Disease Research | Academia News

Thursday, March 29, 2024

See today's top life science stories and headlines - Sign up now!

newsvine diigo google
slashdot
Share
Loading...

Scientists at the Gladstone Institutes have discovered a key protein that regulates insulin resistance—the diminished ability of cells to respond to the action of insulin and which sets the stage for the development of the most common form of diabetes. This breakthrough points to a new way to potentially treat or forestall type 2 diabetes, a rapidly growing global health problem.

In a paper being published online this week in the Proceedings of the National Academy of Sciences, researchers in the laboratory of Gladstone Investigator Katerina Akassoglou, PhD, describe an unexpected role of the p75 neurotrophin receptor in controlling how the body processes sugar. Called p75NTR, this receptor protein is usually associated with functions in neurons.

“We identified that p75NTR is a unique player in glucose metabolism,� said Dr. Akassoglou, who is also an associate professor of neurology at the University of California, San Francisco, with which Gladstone is affiliated. “Therapies targeted at p75NTR may represent a new therapeutic approach for diabetes.�

The pancreas makes a hormone called insulin that processes glucose, moving it from the bloodstream into the body's cells where it is used for energy. Insulin resistance is a key feature of Type 2 diabetes, in which glucose builds up in the bloodstream and the body's cells are unable to function properly. According to the Centers for Disease Control and Prevention, more than 20 million Americans have type 2 diabetes.

“Type 2 diabetes has become a very serious health problem and it is increasing at an alarming rate,� said Lennart Mucke, MD, who directs the institute in which the research was conducted. “These findings provide an important new avenue for developing better therapies to combat this deadly disease—the seventh leading cause of death in the United States.�

Complex signaling interactions between several different types of tissue—including fat, liver, muscle and brain—regulate glucose metabolism. Because p75NTR is found in fat and muscle tissue and participates in many important functions in the cell, Gladstone scientists hypothesized that p75NTR might also help to regulate glucose metabolism.

To study this, the researchers used mice that lacked the genes for p75NTR. They compared these mice to normal mice and discovered that those lacking p75NTR were more responsive to insulin when fed a normal diet. Second, they used some molecular biology tricks to block the action of the p75NTR protein in fat cells. This also resulted in increased glucose absorption in response to insulin. In contrast, when they caused the fat cells to make more p75NTR, glucose absorption was reduced. Additionally, the researchers found that another important regulatory molecule, Rab5, played a key role in p75NTR's impact on metabolism.

“Importantly, regulation by p75NTR enhanced insulin's effectiveness in normal lean mice on a normal diet,� said Bernat Baeza-Raja, PhD, postdoctoral fellow and lead author of the study. “Because these mice already process glucose efficiently, the actions of p75NTR on glucose transport indicate a direct role of this protein in the regulation of glucose metabolism.�

“Our studies of p75NTR's unanticipated role in regulating glucose metabolism suggest a new target for drug therapies,� said Dr. Akassoglou. “Future work is needed to test whether this finding may translate into a potential treatment.�

This study was a collaborative work between scientists at Gladstone, the University of California, San Diego (UCSD), the University of Michigan and the University of Houston. Other scientists who participated in this research at Gladstone include Natacha Le Moan, PhD, Christian Schachtrup, PhD, Dimitrios Davalos, PhD, and Eirini Vagena. Jerrold Olefsky, PhD, and Pingping Li, PhD, at UCSD were co-senior and co-first authors, respectively. Funding was provided by a variety of sources, including the National Institutes of Health, the University of California San Francisco Liver Center and Diabetes and Endocrinology Center and the R. A. Welch Foundation.

Source: The Gladstone Institutes

Join the Discussion
Rate Article: Average 0 out of 5
register or log in to comment on this article!

0 Comments

Add Comment

Text Only 2000 character limit

Page 1 of 1

Research Exchange

Three Tips to Help Manage Customization in Genomics LIMS Implementations

Nov 21 2011

Labs must consider three elements in evaluating genomics laboratory information management system (LIMS) to support the ever-changing workflow characteristics of next-generation sequencing.

How to Build an Integrated Microscopy System for Live Cell Mechanotransduction Studies

How to Build an Integrated Microscopy System for Live Cell Mechanotransduction Studies

Aug 2 2011

A new integrated microscopy system allows scientists to simultaneously stimulate and image live cell response in real-time.

Tips for Reducing Static Electricity

Tips for Reducing Static Electricity

Aug 1 2011

Static electricity can affect automated instrumentation within the lab.

Microscopes for the Non-Microscopist: Multidisciplinary Research Using Optical Imaging

Microscopes for the Non-Microscopist: Multidisciplinary Research Using Optical Imaging

Jul 5 2011

High quality microscopy is increasingly used by scientists in new areas of research.

Evaluation of a New Nano-Type UV-Vis Spectrophotometer

Mar 3 2011

Analysis of one- to four-microliter size samples for nucleic acids has become routine in many life science laboratories. However, until now, available instruments require considerable manipulation of the instrument and sample; some require manually recording the data. The user must typically lower and raise the arm manually, then wipe the sample manually from the target after each analysis. And fiberoptics used in some of these instruments are subject to deterioration.

Production of Recombinant Proteins and Monoclonal Antibodies in Hollow Fiber Bioreactors

Jan 25 2011

While well-understood, robust and convenient, classical batch-style 2-D culture on non-porous supports or 3-D suspension culture in other devices are really not very biologically relevant models. Cell culture conditions can affect the quality of the antibody or protein produced.

Selecting Robots for Use in Drug Discovery and Testing

Dec 6 2010

Drug discovery and testing, with their need for speed, repeatability and verification, are ideally suited to benefit from robot automation. It is therefore not surprising that robots have been at the forefront of automation developments in both these areas.

HP Scalable Network Storage Systems for Life Sciences

Sep 13 2010

Life sciences research today is advancing exponentially, each step bringing us closer to the realization of truly personalized medicine–preventive care and treatments designed specifically for each individual. In the near future, PCPGM healthcare researchers expect to be able to use predictive genetic testing to create custom treatment plans for individuals and deliver dramatic improvements over today’s one-size-fits-all approach. But research capabilities are only part of the equation; current storage and operating capacities must also evolve to accommodate ever-expanding amounts of data before the goal of personalized medicine can be realized.

Using the Tecan Genesis Workstation to Automate a Cytometric Bead Array (CBA) Immunoassay

Mar 11 2010

The poster describe the process involved in automating a Cytometric Bead Array (CBA) immunoassay developed to measure relative concentrations of serum antibodies against Tetanus (TT), Sperm Whale Myoglobin (SWM) and Keyhole Limpet Hemocyanin (KLH) in KLH-immunized volunteers.

Ensuring Quality in Assays Performed with Automated Liquid Handlers

Feb 2 2010

The focus of this presentation is to highlight the need of ensuring quality in important assays performed with automated liquid handlers. Nearly all assays performed within a laboratory are volume-dependent. In turn, all concentrations of biological and chemical components in these assays, as well as the associated dilution protocols, are volume-dependent. Because analyte concentration is volume-dependent, an assay’s results might be falsely interpreted if liquid handler variability and inaccuracies are unknown or if the system(s) go unchecked for a long period.

Inkjet System for Protein Crystallography

Feb 1 2010

X-ray crystallography is used routinely by scientists to obtain the three dimensional structure of a biological molecule of interest.Such information can be used to determine how a pharmaceutical interacts with a protein target and what changes might improve functionality. However, the crystallization of macromolecules still remains a serious hindrance in structural determination despite impressive advances in screening methods and technologies.

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Nov 9 2009

Action selection is modulated by external stimuli either directly or via memory retrieval. In a constantly changing environment, animals have evolved attention-like processes to effectively filter the incoming sensory stream. These attention-like processes, in turn, are modulated by memory. The neurobiological nature of how attention, action selection and memory are inter-connected is unknown. We describe here new phenotypes of the memory mutant radish in the fruit fly Drosophila.

Red Meat Consumption and Mortality: Results From 2 Prospective Cohort Studies

Mar 16

BACKGROUND: Red meat consumption has been associated with an increased risk of chronic diseases. However, its relationship with mortality remains uncertain. METHODS: We prospectively observed 37 698 men from the Health Professionals Follow-up Study (1986-2008)...

Structural analysis of eyespots: dynamics of morphogenic signals that govern elemental positions in butterfly wings.

Mar 15

ABSTRACT: BACKGROUND: To explain eyespot colour-pattern determination in butterfly wings, the induction model has been discussed based on colour-pattern analyses of various butterfly eyespots. However, a detailed structural analysis of eyespots that can serve as...

Prokariotic Cell Collection in Denmark

Nov 6 2009

I would like to know about a prokariotic cell collection in Denmark. Is there a cell bank in this country? I need a Lactobacillus strain for a fermentation assay and this information about the bank is very helpful for me.

Request for Entries

Oct 16 2009

Ask the Experts is your chance to get the answers to questions on applications, materials, methods, processes, and technologies. Email you question to bst_web@advantagemedia.com, and the editors of Bioscience Technology will find an appropriate expert to answer it. Watch this space in the future to see the questions your colleagues are posting.

STAY INFORMED: SUBSCRIBE TO

Magazine and E-mail Newsletters

Loading...
Loading...

Free Life Science Industry
Subscriptions

Magazine

wireless week

Newsletters

newsletters

Sign up now â–º



MULTIMEDIA

Video:

Viewing SureFocus Slides

Jun 11 2010

A demonstration of SureFocus Microscope Slides in the review of AFB Smears. SureFocus Slides are a patent-pending breakthrough in tuberculosis detection, as their fluorescent staining circle remains visible during review, Fluorescence Microscopy.

Podcasts:

Allen Institute for Brain Research

Allen Institute for Brain Research

Oct 14 2009

Discussed in this interview are both the mouse brain project and the human cortex project with an emphasis on the importance of these projects to neuroscience research.

Top Stories and Headlines
EVERY DAY!

FREE Email Newsletter

Information: