Loading...

Daily news and top headlines for life science research professionals

FREE Email Newsletter View Sample


A Material to Rejuvenate Aging and Diseased Human Vocal Cords

Featured In: Academia News

Tuesday, August 21, 2024

See today's top life science stories and headlines - Sign up now!

newsvine diigo google
slashdot
Share
Loading...

A new made-in-the-lab material designed to rejuvenate the human voice, restoring the flexibility that vocal cords lose with age and disease, is emerging from a collaboration between scientists and physicians, a scientist heading the development team said.

That’s just one of several innovations that Robert Langer, Sc.D., discussed in delivering the latest Kavli Foundation Innovations in Chemistry Lecture at the 244th National Meeting & Exposition of the American Chemical Society (ACS).

Langer heads a team of almost 100 in laboratories at the Massachusetts Institute of Technology (MIT), one of the world’s largest academic research laboratories. He holds, or has applied for, more than 800 patents, and has founded or co-founded numerous companies, with honors that include the ACS’ 2012 Priestley Medal, the highest honor of the world’s largest scientific society.

The artificial vocal cord material, the first designed to restore lost flexibility in human vocal cords, results from an ongoing effort to produce artificial tissues in the lab, Langer explained. Lost flexibility in the vocal cords, due to the effects of aging or disease, is a major factor in the voice loss that affects 18 million people in the United States alone.

“The synthetic vocal cord gel has similar properties as the material found in human vocal cords and flutters in response to air pressure changes, just like the real thing,” explained Langer, who is the David H. Koch Institute Professor at MIT.

The vocal cords are two folds in the “voice box” that vibrate, or come together and away from each other very quickly to produce puffs of air that help form sounds. They function in much the same way as a reed in a saxophone. The cords consist of layers of muscle, ligament and a membrane. A layer between the ligament and the membrane is very flexible, and that flexibility and pliability is critical for speech.

But when someone, such as a teacher, a politician or a performer, overuses their voice, scar tissue develops. The same thing happens when a person gets older, accounting for the lower volume and hoarseness often apparent in older people. Cancer or having a tube inserted in the throat for medical procedures also can damage the cords. Scar tissue is stiff, and scarring leaves a person with a hoarse, breathy voice.

“About 90 percent of human voice loss is because of lost pliability,” said Steven Zeitels, M.D., F.A.C.S., Langer’s collaborator on the project. Zeitels is the Eugene B. Casey Professor at Harvard Medical School and Director of the Massachusetts General Hospital Voice Center. His patients include singers Julie Andrews of The Sound of Music fame, who lost her full vocal range after surgery done elsewhere in 1997, Steven Tyler of Aerosmith and Adele. “I recognized this need in my practice over the years, after seeing many patients with voice problems. I went to Bob Langer because I knew he could help design a material that would ultimately help patients speak and sing again. Currently, no treatments exist to restore vocal cord flexibility.”

The material had to be very flexible and be able to vibrate just like human vocal cords. After trying numerous candidates, Langer’s team settled on polyethylene glycol 30 (PEG30), which is already used in personal care creams and in medical devices and drugs approved by the U.S. Food and Drug Administration (FDA), as a starting material and created polymers based on it. The PEG30 gel can flutter at a rate of 200 times per second, which is a normal rate for a woman speaking in a conversation. Watch a video of the artificial vocal cord gel in action here.

A physician would inject the gel into a patient’s vocal cords. Patients would receive different formulations, depending on how they use their voices. The most stable version is highly “cross-linked,” which means the molecules of PEG are more tightly stitched together than in other versions. That makes the material a little bit rigid, but it would still help restore someone’s speaking voice. A singer, however, would likely receive a formulation that is more loosely stitched together, or less cross-linked, which is more flexible to allow the patient to hit high notes. The gel degrades over time, so patients would receive two to five injections per year, estimated Zeitels.

Tests in animals suggest that the material is safe, and human trials will hopefully begin in mid-2013. Some of Zeitels’ patients, such as Andrews, have formed a nonprofit organization called The Voice Health Institute, which funds Langer and Zeitels’ research on the vocal cord biomaterial.

Artificial vocal cords are just one artificial tissue in development in Langer’s lab. He described work on building intestinal, spinal cord, pancreatic and heart tissue in the laboratory with many different types of materials. Among them: Nanowires (which are about a tenth the diameter of a human hair) and something called “biorubber.”

“It’s hard to know when they will be ready for clinical use,” Langer said. “But In Vivo Therapeutics hopes to start clinical trials for the spinal cord tissue we’ve developed within the next year.”

Langer also recently developed a pacemaker-sized microchip that delivers just the right amount of medication at just the right time, potentially allowing thousands of patients to ditch painful needles forever. A clinical trial of the device, implanted in women with osteoporosis, has just concluded and showed that it was safe to use. The device released osteoporosis medication when it received a signal from a computer. It worked just as well as daily shots of the drug. MicroCHIPS, Inc., a company that Langer co-founded, will commercialize the remote-controlled microchip.

Another way to make medicines more effective is to make sure they go exactly to the location where they are needed; this reduces harmful side effects. Langer’s targeted nanoparticles can do just that. A clinical trial run by BIND Biosciences, another company co-founded by Langer, recently found that these nanoparticles are safe in humans. The particles have a homing molecule on them that targets them to prostate cancer cells or cancer blood vessels, and they deliver an anti-cancer medication called docetaxel. All of the materials, including the drug, are already approved by the FDA.

Langer said that the chemical engineering field, which marries chemistry and engineering to make useful devices and other substances, is booming. “There are all kinds of advances happening in drug delivery, new vaccines and immunotherapies, tissue engineering, nanotherapies and nanodiagnostics,” he said.

Source: American Chemical Society

Join the Discussion
Rate Article: Average 0 out of 5
register or log in to comment on this article!

0 Comments

Add Comment

Text Only 2000 character limit

Page 1 of 1

Research Exchange

Safety Without Sacrifice

Safety Without Sacrifice

Jun 26

Liquid handling ergonomics and performance considerations

Three Tips to Help Manage Customization in Genomics LIMS Implementations

Nov 21 2011

Labs must consider three elements in evaluating genomics laboratory information management system (LIMS) to support the ever-changing workflow characteristics of next-generation sequencing.

How to Build an Integrated Microscopy System for Live Cell Mechanotransduction Studies

How to Build an Integrated Microscopy System for Live Cell Mechanotransduction Studies

Aug 2 2011

A new integrated microscopy system allows scientists to simultaneously stimulate and image live cell response in real-time.

Tips for Reducing Static Electricity

Tips for Reducing Static Electricity

Aug 1 2011

Static electricity can affect automated instrumentation within the lab.

Evaluation of a New Nano-Type UV-Vis Spectrophotometer

Mar 3 2011

Analysis of one- to four-microliter size samples for nucleic acids has become routine in many life science laboratories. However, until now, available instruments require considerable manipulation of the instrument and sample; some require manually recording the data. The user must typically lower and raise the arm manually, then wipe the sample manually from the target after each analysis. And fiberoptics used in some of these instruments are subject to deterioration.

Production of Recombinant Proteins and Monoclonal Antibodies in Hollow Fiber Bioreactors

Jan 25 2011

While well-understood, robust and convenient, classical batch-style 2-D culture on non-porous supports or 3-D suspension culture in other devices are really not very biologically relevant models. Cell culture conditions can affect the quality of the antibody or protein produced.

Selecting Robots for Use in Drug Discovery and Testing

Dec 6 2010

Drug discovery and testing, with their need for speed, repeatability and verification, are ideally suited to benefit from robot automation. It is therefore not surprising that robots have been at the forefront of automation developments in both these areas.

HP Scalable Network Storage Systems for Life Sciences

Sep 13 2010

Life sciences research today is advancing exponentially, each step bringing us closer to the realization of truly personalized medicine–preventive care and treatments designed specifically for each individual. In the near future, PCPGM healthcare researchers expect to be able to use predictive genetic testing to create custom treatment plans for individuals and deliver dramatic improvements over today’s one-size-fits-all approach. But research capabilities are only part of the equation; current storage and operating capacities must also evolve to accommodate ever-expanding amounts of data before the goal of personalized medicine can be realized.

Using the Tecan Genesis Workstation to Automate a Cytometric Bead Array (CBA) Immunoassay

Mar 11 2010

The poster describe the process involved in automating a Cytometric Bead Array (CBA) immunoassay developed to measure relative concentrations of serum antibodies against Tetanus (TT), Sperm Whale Myoglobin (SWM) and Keyhole Limpet Hemocyanin (KLH) in KLH-immunized volunteers.

Ensuring Quality in Assays Performed with Automated Liquid Handlers

Feb 2 2010

The focus of this presentation is to highlight the need of ensuring quality in important assays performed with automated liquid handlers. Nearly all assays performed within a laboratory are volume-dependent. In turn, all concentrations of biological and chemical components in these assays, as well as the associated dilution protocols, are volume-dependent. Because analyte concentration is volume-dependent, an assay’s results might be falsely interpreted if liquid handler variability and inaccuracies are unknown or if the system(s) go unchecked for a long period.

Inkjet System for Protein Crystallography

Feb 1 2010

X-ray crystallography is used routinely by scientists to obtain the three dimensional structure of a biological molecule of interest.Such information can be used to determine how a pharmaceutical interacts with a protein target and what changes might improve functionality. However, the crystallization of macromolecules still remains a serious hindrance in structural determination despite impressive advances in screening methods and technologies.

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Nov 9 2009

Action selection is modulated by external stimuli either directly or via memory retrieval. In a constantly changing environment, animals have evolved attention-like processes to effectively filter the incoming sensory stream. These attention-like processes, in turn, are modulated by memory. The neurobiological nature of how attention, action selection and memory are inter-connected is unknown. We describe here new phenotypes of the memory mutant radish in the fruit fly Drosophila.

Red Meat Consumption and Mortality: Results From 2 Prospective Cohort Studies

Mar 16

BACKGROUND: Red meat consumption has been associated with an increased risk of chronic diseases. However, its relationship with mortality remains uncertain. METHODS: We prospectively observed 37 698 men from the Health Professionals Follow-up Study (1986-2008)...

Structural analysis of eyespots: dynamics of morphogenic signals that govern elemental positions in butterfly wings.

Mar 15

ABSTRACT: BACKGROUND: To explain eyespot colour-pattern determination in butterfly wings, the induction model has been discussed based on colour-pattern analyses of various butterfly eyespots. However, a detailed structural analysis of eyespots that can serve as...

Prokariotic Cell Collection in Denmark

Nov 6 2009

I would like to know about a prokariotic cell collection in Denmark. Is there a cell bank in this country? I need a Lactobacillus strain for a fermentation assay and this information about the bank is very helpful for me.

Request for Entries

Oct 16 2009

Ask the Experts is your chance to get the answers to questions on applications, materials, methods, processes, and technologies. Email you question to bst_web@advantagemedia.com, and the editors of Bioscience Technology will find an appropriate expert to answer it. Watch this space in the future to see the questions your colleagues are posting.

STAY INFORMED: SUBSCRIBE TO

Magazine and E-mail Newsletters

Loading...
Loading...

Free Life Science Industry
Subscriptions

Magazine

wireless week

Newsletters

newsletters

Sign up now



MULTIMEDIA

Video:

Viewing SureFocus Slides

Jun 11 2010

A demonstration of SureFocus Microscope Slides in the review of AFB Smears. SureFocus Slides are a patent-pending breakthrough in tuberculosis detection, as their fluorescent staining circle remains visible during review, Fluorescence Microscopy.

Podcasts:

Futures In Biotech 93: Snyder's Omics

May 17

Host: Marc Pelletier Co-Host: Andre Nantel, Ph.D. The technologies that our guest has developed are playing an important role in changing the world, not like the car, the microwave and the cell phone, but as in Drs. Flox, McCoy, and Crusher. Guest: Dr. Michael Snyder We invite...

Top Stories and Headlines
EVERY DAY!

FREE Email Newsletter

Information: