Empa grows 'sea urchin'-shaped structures

Featured In: Instrumentation

By EurekAlert Thursday, July 29, 2024

newsvine diigo google
slashdot
Share
Loading...

Processes which lend materials new characteristics are generally complicated and therefore often rather difficult to reproduce. So surprise turns to astonishment when scientists report on new methods which not only produce outstanding results despite the fact that they use economically priced starting materials but also do not need expensive instrumentation.

Just a simple framework made of polystyrene

This is exactly what Jamil Elias and Laetitia Philippe of Empa's Mechanics of Materials and Nanostructures Laboratory in Thun have succeeded in doing. They used polystyrene spheres as a sort of scaffolding to create three-dimensional nanostructures of semiconducting zinc oxide on various substrates. The two scientists are convinced that the (nanostructured) «rough» but regularly-structured surfaces they have produced this way can be exploited in a range of electronic and optoelectronic devices such as solar cells and also short wave lasers, light emitting diodes and field emission displays.

The scientific world reacted promptly. The paper in which the results were reported was published in January 2010 in the on line edition of «Advanced Materials». In the same month it became the most frequently downloaded article, and in April it was selected to appear on the Inside Front Cover of the journal.

The principle behind the process is quite simple. Little spheres of polystyrene a few micrometers in diameter are placed on an electrically conducting surface where they orient themselves in regular patterns. Polystyrene is cheap and ubiquitous - it is widely used as a packaging material (for example for plastic yoghurt pots) or as insulating material in expanded form as a solidified foam.

Hollow bodies with prickles for photovoltaic applications

The tiny balls of polystyrene anchored in this way form the template on which the nanowires are desposited. Jamil Elias has succeeded in using an electrochemical method which himself has developed to vary the conductivity and electrolytic properties of the polystyrene balls in such way that the zinc oxide is deposited on the surface of the microspheres. Over time regular nanowires grow from this surface, and when this process is complete the polystyrene is removed, leaving behind hollow spherical structures with spines - little sea-urchins, as it were! Tightly packed on the underlying substrate, the sea-urchins lend it a three-dimensional structure, thereby increasing considerably its surface area.

This nanostructured surface is predestined for use in photovoltaic applications. The researchers expect that it will have excellent light scattering properties. This means the surface will be able to absorb significantly more sunlight and therefore be able to convert radiated energy into electricity more efficiently. In a project supported by the Swiss Federal Office of Energy (SFOE), Laetitia Philippe and her research team are developing extremely thin absorbers (ETAs) for solar cells, based these zinc oxide nanostructures.

SOURCE

Join the Discussion
Rate Article: Average 0 out of 5
register or log in to comment on this article!

0 Comments

Add Comment

Text Only 2000 character limit

Page 1 of 1

Research Exchange

New Frontiers: The Changing World of Biospecimen Collection and Management

12 hours ago

The growth of biomarker research and personalized medicine requires more unified and large-scale software systems to track biological materials.

Optical Imaging in Stem Cell Research

Jun 1

Developing sensitive, non-invasive technologies to monitor engraftment in vivo is essential to accelerate the clinical implementation of cell therapies.

Standing Up in a Court of Law

Jun 1

Private forensic testing laboratory ensures data integrity with advanced calibration systems.

Simultaneous Measurement of Multiple Signaling Pathways in Human Leukemias Using Flow Cytometry

May 24

Next generation assays will need to be robust and standardized in order to make the transition from a research procedure to a routine clinical assay. Flow cytometry provides a unique and sensitive method to accomplish these requirements.

Step up to the MIQE

Mar 30

Over the years, polymerase chain reaction (PCR) has evolved into a readily automated, high throughput quantitative technology. Real-time quantitative PCR (qPCR) has become the industry standard for the detection and quantification of nucleic acids for multiple application, including quantification of RNA levels. But a lack of consensus among researchers on how to best perform and interpret qPCR experiments presents a major hurdle for advancement of the technology. This problem is exacerbated by insufficient experimental detail in published work, which impedes the ability of others to accurately evaluate or replicate reported results.

Fast Optimization of a Multiplex Influenza Identification Panel Using a Thermal Gradient

Mar 30

The year 2009 was marked by the emergence of a novel influenza A (H1N1) virus that infects humans. There is a need to identify the different strains of influenza virus for purposes of monitoring the H1N1 strain pandemic and for other epidemiological and scientific purposes.

Advantages of Monolithic Laser Combiner Technology in Confocal Microscopy Systems

Jan 6

Fluorescence microscopy techniques require a reliable light source at the desired wavelength or wavelengths, with minimal downtime for maintenance and alignment. Lasers are a popular light source, although the alignment and upkeep of laser combiners is a time-consuming prospect for many users.

Size-Exclusion Chromatography for Purification of Biomolecules

Dec 2 2009

Size-exclusion chromatography (SEC) is a popular method to separate biomolecules based on their size. Primarily, it is applied to the separation of biopolymers such as proteins and nucleic acids, i.e. water-soluble polymers.

Using the Tecan Genesis Workstation to Automate a Cytometric Bead Array (CBA) Immunoassay

Mar 11

The poster describe the process involved in automating a Cytometric Bead Array (CBA) immunoassay developed to measure relative concentrations of serum antibodies against Tetanus (TT), Sperm Whale Myoglobin (SWM) and Keyhole Limpet Hemocyanin (KLH) in KLH-immunized volunteers.

Ensuring Quality in Assays Performed with Automated Liquid Handlers

Feb 2

The focus of this presentation is to highlight the need of ensuring quality in important assays performed with automated liquid handlers. Nearly all assays performed within a laboratory are volume-dependent. In turn, all concentrations of biological and chemical components in these assays, as well as the associated dilution protocols, are volume-dependent. Because analyte concentration is volume-dependent, an assay’s results might be falsely interpreted if liquid handler variability and inaccuracies are unknown or if the system(s) go unchecked for a long period.

Inkjet System for Protein Crystallography

Feb 1

X-ray crystallography is used routinely by scientists to obtain the three dimensional structure of a biological molecule of interest.Such information can be used to determine how a pharmaceutical interacts with a protein target and what changes might improve functionality. However, the crystallization of macromolecules still remains a serious hindrance in structural determination despite impressive advances in screening methods and technologies.

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Nov 9 2009

Action selection is modulated by external stimuli either directly or via memory retrieval. In a constantly changing environment, animals have evolved attention-like processes to effectively filter the incoming sensory stream. These attention-like processes, in turn, are modulated by memory. The neurobiological nature of how attention, action selection and memory are inter-connected is unknown. We describe here new phenotypes of the memory mutant radish in the fruit fly Drosophila.

Bile acids regulate hepatic gluconeogenic genes and farnesoid X receptor via G(alpha)i-protein-coupled receptors and the AKT pathway.

2 hours ago

Bile acids are important regulatory molecules that can activate specific nuclear receptors and cell signaling pathways in the liver and gastrointestinal tract. In the current study, the chronic bile fistula (CBF) rat model and primary rat hepatocytes (PRH) were used to study...

Purification of the CaaX-modified, dynamin-related large GTPase hGBP1 by coexpression with farnesyltransferase.

3 hours ago

Over a hundred proteins in eukaryotic cells carry a C-terminal CaaX box sequence, which targets them for posttranslational isoprenylation of the cysteine residue. This modification, catalyzed by either farnesyl or geranylgeranyl transferase, converts them into peripheral...

Genome Sequence of a Cellulose-Producing Bacterium, Gluconacetobacter hansenii ATCC 23769.

5 hours ago

The Gram-negative bacterium Gluconacetobacter hansenii is considered a model organism for studying cellulose synthesis. We have determined the genome sequence of strain ATCC 23769.

Novel Antileukemic Compound Ingenol 3-Angelate Inhibits T Cell Apoptosis by Activating Protein Kinase C{theta}.

6 hours ago

Members of the protein kinase C (PKC) family of serine-threonine kinases are important regulators of immune cell survival. Ingenol 3-angelate (PEP005) activates a broad range of PKC isoforms and induces apoptosis in acute myeloid leukemia cells by activating the PKC isoform...

Prokariotic Cell Collection in Denmark

Nov 6 2009

I would like to know about a prokariotic cell collection in Denmark. Is there a cell bank in this country? I need a Lactobacillus strain for a fermentation assay and this information about the bank is very helpful for me.

Request for Entries

Oct 16 2009

Ask the Experts is your chance to get the answers to questions on applications, materials, methods, processes, and technologies. Email you question to bst_web@advantagemedia.com, and the editors of Bioscience Technology will find an appropriate expert to answer it. Watch this space in the future to see the questions your colleagues are posting.

STAY INFORMED: SUBSCRIBE TO

Magazine and E-mail Newsletters

Loading...
E-mail:   

MULTIMEDIA

Video:

Viewing SureFocus Slides

Jun 11

A demonstration of SureFocus Microscope Slides in the review of AFB Smears. SureFocus Slides are a patent-pending breakthrough in tuberculosis detection, as their fluorescent staining circle remains visible during review, Fluorescence Microscopy.

Podcasts:

Allen Institute for Brain Research

Allen Institute for Brain Research

Oct 14 2009

Discussed in this interview are both the mouse brain project and the human cortex project with an emphasis on the importance of these projects to neuroscience research.

Information: