New microscopy method opens window on previously unseen cell features

Featured In: Instrumentation

By EurekAlert Monday, January 24, 2024

newsvine diigo google
slashdot
Share
Loading...

Despite the sophistication and range of contemporary microscopy techniques, many important biological phenomena still elude the precision of even the most sensitive tools. The need for refined imaging methods for fundamental research and biomedical applications related to the study of disease remains acute.

Nongjian (N.J.) Tao and his colleagues at the Biodesign Institute at Arizona State University have pioneered a new technique capable of peering into single cells and even intracellular processes with unprecedented clarity. The method, known as electrochemical impedance microscopy (EIM) may be used to explore subtle features of profound importance for basic and applied research, including cell adhesion, cell death (or apoptosis) and electroporation—a process that can be used to introduce DNA or drugs into cells.

This new investigative tool is expected to make significant research inroads, improving drug discovery for diseases like cancer, furthering the study of host cell-pathogen interactions, and refining the analysis of stem cell differentiation.

The group's research appears in today's issue of the journal Nature Chemistry.

As Tao explains, the method builds on the advantages of a powerful existing technology known as electrochemical impedance spectroscopy (EIS). Here, an AC voltage is applied to an electrode and the current response is measured as a change in impedance. (Impedance is defined as opposition to alternating current and extends the idea of electrical resistance to AC circuits.)

In addition to permitting observation of DNA, proteins, viruses and bacteria, EIS allows other subtle phenomena occurring at the electrode's surface to be imaged, including molecular binding events. Modifications of the EIS method have been applied to the study of other cellular processes including cell spreading, adhesion, invasion, toxicology and mobility.

A further attraction of the technique is that unlike fluorescence imaging, EIS is a so-called label-free technology, making it non-invasive to the sample under study. No fluorescent labeling particles or dyes—which can often interfere with normal cellular function—are required.

EIS however has one Achilles heel—it can't provide good spatial resolution. As Tao explains "Our technology provides high spatial resolution, making it possible to image and study single cells and subcellular processes, and detect and anayze biomolecules in a high density microarray format."

Obtaining good spatial resolution through conventional EIS would either require the use of multiple electrodes monitoring the surface to be studied, or a single electrode that mechanically scans across the surface. Both of these strategies have serious limitations that make them impractical. Tao and his colleagues have taken a different approach, combining EIS with another robust imaging technology based on surface plasmon resonance.

Surface plasmon resonance or SPR imaging is an optical detection process. Under proper conditions, polarized light striking a thin layer of gold, will cause free electrons to absorb the incident light particles, converting them into a surface plasmon wave, which propagates across the gold layer's surface, much like a wave on water. Perturbations of this delicate wave by target molecules cause alterations in the reflective properties of the incident light. These changes can be recorded and translated into an image.

Using SPR, simultaneous events over the entire surface of a biochip can be studied in real time, without the need for multiple electrodes. The method developed by Tao—known as electrochemical impedance microscopy (EIM)— differs from conventional EIS in that it does not measure current, but rather, uses plasmon resonance to detect impedance changes optically, dramatically enhancing spatial resolution of observed features. In addition to the EIM image, the new technique produces simultaneous optical and SPR imagery, which provide useful complementary information.

EIM allows for sub-micron spatial resolution of biological phenomena. Two cell processes in particular were observed in the current study: apoptosis and electroporation. Both of these phenomena require not only good spatial resolution but the ability to monitor fast-changing events in real time—something EIM excels at, using a specialized video camera to record rapid cellular events.

Apoptosis or cell death is of critical research significance. It is a central element in homeostasis and tissue/organ development. A better understanding of the cellular mechanisms of apoptosis is also critical for cancer research, and for the design of cancer therapies, which often attempt to induce apoptosis in malignant cells.

Tao and his group induced cell death in cervical cancer cells through the application of two molecules: MG132 and TRAIL—an apoptosis-inducing ligand. EIM imaging yielded detailed information of the successive stages of apoptosis, which include cellular shrinking and condensation followed by the fragmentation of nuclear material and eventual disintegration of the cells, with SPR and EIM imagery providing a complementary record of events. As Tao notes, before this study, such detailed information was only obtainable through fluorescent staining or electron microscopy.

Electroporation was also observed through EIM. Here, a voltage pulse is applied to a cell, causing a sudden increase in the conductivity and permeability the cell's plasma membrane. This valuable technique can be used to insert a molecular probe to monitor a cell's interior, or to introduce a cell-altering drug or segment of coding DNA. Once again, complementary information provided by optical, SPR and EIM combined to give a much more complete picture of this process, with the EIM images revealing the most dramatic changes over time. "We are excited by its potential for mapping out local activities of many celluar processes, such as ion channel activities and drug-cell interactions. "

Continued work will further refine this label-free, non-invasive microscopy technique, offering fresh insights into previously elusive cellular events.

SOURCE

Join the Discussion
Rate Article: Average 0 out of 5
register or log in to comment on this article!

0 Comments

Add Comment

Text Only 2000 character limit

Page 1 of 1

Research Exchange

Bringing the Cell Image into Focus

Nov 2 2010

Improvements in transmission electron microscope (TEM) technology increase the power of this imaging tool for the study of cell biology.

Finding a Cure for Spinal Cord Injury with On-Demand LIMS

Oct 25 2010

The Miami Project to Cure Paralysis finds an on-demand laboratory information management system (LIMS) helps to accelerate discovery in its HCS projects.

Saving Cells: Image Processing for Improved Viability, Part II: Iterative Deconvolution

Oct 25 2010

3D light microscopy and deconvolution provide a means to investigate 3D structure, providing near-confocal quality images without the temporal requirements or potentially damaging phototoxicity associated with other 3D imaging technologies. This article is Part II in a series regarding viability, resolution improvement, and measurement in fluorescence imaging. Part I focused on spectral unmixing.

Saving Cells: Image Processing for Improved Viability

Sep 22 2010

This article is Part I of a two-part series regarding viability, resolution improvement, and measurement in fluorescence imaging. Part II will focus on deconvolution.

Production of Recombinant Proteins and Monoclonal Antibodies in Hollow Fiber Bioreactors

Jan 25

While well-understood, robust and convenient, classical batch-style 2-D culture on non-porous supports or 3-D suspension culture in other devices are really not very biologically relevant models. Cell culture conditions can affect the quality of the antibody or protein produced.

Selecting Robots for Use in Drug Discovery and Testing

Dec 6 2010

Drug discovery and testing, with their need for speed, repeatability and verification, are ideally suited to benefit from robot automation. It is therefore not surprising that robots have been at the forefront of automation developments in both these areas.

HP Scalable Network Storage Systems for Life Sciences

Sep 13 2010

Life sciences research today is advancing exponentially, each step bringing us closer to the realization of truly personalized medicine–preventive care and treatments designed specifically for each individual. In the near future, PCPGM healthcare researchers expect to be able to use predictive genetic testing to create custom treatment plans for individuals and deliver dramatic improvements over today’s one-size-fits-all approach. But research capabilities are only part of the equation; current storage and operating capacities must also evolve to accommodate ever-expanding amounts of data before the goal of personalized medicine can be realized.

Step up to the MIQE

Mar 30 2010

Over the years, polymerase chain reaction (PCR) has evolved into a readily automated, high throughput quantitative technology. Real-time quantitative PCR (qPCR) has become the industry standard for the detection and quantification of nucleic acids for multiple application, including quantification of RNA levels. But a lack of consensus among researchers on how to best perform and interpret qPCR experiments presents a major hurdle for advancement of the technology. This problem is exacerbated by insufficient experimental detail in published work, which impedes the ability of others to accurately evaluate or replicate reported results.

Using the Tecan Genesis Workstation to Automate a Cytometric Bead Array (CBA) Immunoassay

Mar 11 2010

The poster describe the process involved in automating a Cytometric Bead Array (CBA) immunoassay developed to measure relative concentrations of serum antibodies against Tetanus (TT), Sperm Whale Myoglobin (SWM) and Keyhole Limpet Hemocyanin (KLH) in KLH-immunized volunteers.

Ensuring Quality in Assays Performed with Automated Liquid Handlers

Feb 2 2010

The focus of this presentation is to highlight the need of ensuring quality in important assays performed with automated liquid handlers. Nearly all assays performed within a laboratory are volume-dependent. In turn, all concentrations of biological and chemical components in these assays, as well as the associated dilution protocols, are volume-dependent. Because analyte concentration is volume-dependent, an assay’s results might be falsely interpreted if liquid handler variability and inaccuracies are unknown or if the system(s) go unchecked for a long period.

Inkjet System for Protein Crystallography

Feb 1 2010

X-ray crystallography is used routinely by scientists to obtain the three dimensional structure of a biological molecule of interest.Such information can be used to determine how a pharmaceutical interacts with a protein target and what changes might improve functionality. However, the crystallization of macromolecules still remains a serious hindrance in structural determination despite impressive advances in screening methods and technologies.

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Nov 9 2009

Action selection is modulated by external stimuli either directly or via memory retrieval. In a constantly changing environment, animals have evolved attention-like processes to effectively filter the incoming sensory stream. These attention-like processes, in turn, are modulated by memory. The neurobiological nature of how attention, action selection and memory are inter-connected is unknown. We describe here new phenotypes of the memory mutant radish in the fruit fly Drosophila.

Effects on enantiomeric drug disposition and open-field behavior after chronic treatment with venlafaxine in the P-glycoprotein knockout mice model.

Dec 31 2010

RATIONALE: P-glycoprotein (P-gp) plays an important role in the efflux of drugs from the brain back into the bloodstream and can influence the pharmacokinetics and pharmacodynamics of drug molecules. To our knowledge, no studies have reported pharmacodynamic...

Self-administration of cocaine and remifentanil by monkeys: choice between single drugs and mixtures.

Dec 31 2010

RATIONALE: Cocaine and opioids are often co-abused. As yet, however, there is no clear evidence that the drugs interact to make the mixture a more effective reinforcer. OBJECTIVE: The present study examined the relative reinforcing potency and maximum...

Complete genome sequence of a carbon monoxide-utilizing acetogen, Eubacterium limosum KIST612.

Dec 31 2010

Eubacterium limosum KIST612 is an anaerobic acetogenic bacterium that uses CO as the sole carbon/energy source and produces acetate, butyrate, and ethanol. To evaluate its potential as a syngas microbial catalyst, we have sequenced the complete 4.3-Mb genome of E. limosum...

Complete genome sequence of the bacterium Ketogulonicigenium vulgare Y25.

Dec 31 2010

Ketogulonicigenium vulgare is characterized by the efficient production of 2KGA from L-sorbose. Ketogulonicigenium vulgare Y25 is known as a 2-keto-L-gulonic acid-producing strain in the vitamin C industry. Here we report the finished, annotated genome sequence of...

Prokariotic Cell Collection in Denmark

Nov 6 2009

I would like to know about a prokariotic cell collection in Denmark. Is there a cell bank in this country? I need a Lactobacillus strain for a fermentation assay and this information about the bank is very helpful for me.

Request for Entries

Oct 16 2009

Ask the Experts is your chance to get the answers to questions on applications, materials, methods, processes, and technologies. Email you question to bst_web@advantagemedia.com, and the editors of Bioscience Technology will find an appropriate expert to answer it. Watch this space in the future to see the questions your colleagues are posting.

STAY INFORMED: SUBSCRIBE TO

Magazine and E-mail Newsletters

Loading...
E-mail:   

MULTIMEDIA

Video:

Viewing SureFocus Slides

Jun 11 2010

A demonstration of SureFocus Microscope Slides in the review of AFB Smears. SureFocus Slides are a patent-pending breakthrough in tuberculosis detection, as their fluorescent staining circle remains visible during review, Fluorescence Microscopy.

Podcasts:

Allen Institute for Brain Research

Allen Institute for Brain Research

Oct 14 2009

Discussed in this interview are both the mouse brain project and the human cortex project with an emphasis on the importance of these projects to neuroscience research.

Information: