Forests absorb one-third of global fossil fuel emissions

Featured In: Academia News

By University of Leeds Friday, July 15, 2024

See today's top life science stories and headlines - Sign up now!

newsvine diigo google
slashdot
Share
Loading...

The world’s established forests remove 8.8bn tonnes of CO2 per year from the atmosphere – equivalent to nearly a third of annual fossil fuel emissions – according to new research published in Science.

In addition, regrowth of trees on previously deforested lands in the tropics mopped up a further 6 billion tonnes of CO2 annually between 1990 and 2007(1). However, deforestation across the tropics released a huge 10.8 billion tonnes of CO2 annually during this period, off-setting much of the uptake of CO2 by the world's forests. For comparison, global fossil fuel emissions average 28 billion tonnes of CO2 annually. 

The findings suggest that the world's tropical, temperate and boreal(2) forests play a much larger role in the global cycling of carbon than previously thought, and that protecting them is vital in limiting the severity of future climate change. 

Dr Simon Lewis, a tropical ecologist from the University of Leeds and co-author of the study, said: "Humans are altering the world's forests in a number of ways, from their outright destruction to the much more subtle impacts on even the most remote forests caused by global changes to the environment.  

"Our research shows these changes are having globally important impacts, which highlights the critical role forests play in the global cycling of carbon and therefore the speed and severity of future climate change. 

"The practical importance of this new information is that if schemes to reduce deforestation are successful they would have significant positive global impacts, as would similar efforts promoting forest restoration."    

The international team of researchers, led by Dr Yude Pan from the United States Forest Service, used on-the-ground measurements of trees worldwide and statistical models to provide an updated picture of atmospheric carbon uptake and loss by boreal, temperate and tropical forests spanning a total of 3.9 billion hectares. 

Dr Pan said, "By breaking the large-scale carbon dynamics of forests into their many components, we were able to separately analyse the large magnitudes of carbon fluxes, both sinks and sources, and gain an idea of the potential capacity for carbon sequestration by the world's forests."  

After adding together all the sources and sinks, the researchers found that there was a net climate benefit of 4 billion tonnes of carbon dioxide each year absorbed by forests, as uptake out-stripped releases.  

The study also provided two further new insights.   

In the tropics, separating the carbon losses from deforestation and carbon uptake from regrowing forests shows that the figure usually reported for carbon emissions associated with tropical 'land-use change' hides these two much larger fluxes. "By separating them out, we see that carbon emissions from tropical deforestation are much larger than we thought, while uptake from forest re-growth in the tropics is also probably very large," said Dr Lewis.  

The second insight is that the newly reported total carbon uptake by boreal, temperate and remaining tropical forests together is equal to the total global land carbon sink(3). "The large uptake of CO2 by forests implies that the world's agricultural lands, grasslands, desert and tundra each play a more limited role as globally significant carbon dioxide sources or sinks at present. This new information can help pinpoint where actions to conserve carbon sinks are likely to have most impact," explains Dr Lewis.  

However, Dr Lewis urged caution in the interpretation of the results: "We can't rely on forest management alone to halt the increase of CO2 in the atmosphere and solve the problem of climate change. There is simply not enough land on Earth to store all the carbon released from ongoing fossil fuel emissions in trees.  

"Forest management can help, but reducing fossil fuel emissions is essential. And, of course, forests won't keep removing CO2 from the atmosphere forever. The world's remaining forests are providing a time-limited benefit to humanity."  

Study co-author Oliver Phillips, Professor of Tropical Ecology at the University of Leeds , emphasised the need for more research. He said: "We know the tropics are the most dynamic area of the world when considering the exchange of carbon between the land and atmosphere.

"Trees grow fast in the tropics, and widespread deforestation is the norm, yet our collective research effort is smaller in the tropics than elsewhere. What we need is serious investment in monitoring the world's tropical forests to better understand their role in our rapidly changing global environment."  

Professor Phillips co-ordinates the RAINFOR network of long-term tropical forest monitoring sites across South America (http://www.rainfor.org/). Dr Lewis co-ordinates a similar network across Africa (http://www.afritron.org/). Both were used to estimate the carbon sink in remaining tropical forests reported in the study. 

For more information 

The paper, 'A Large and Persistent Carbon Sink in the World's Forests, 1990-2007', by: Pan Yude, Richard Birdsey, Jingyun Fang, Richard Houghton, Pekka Kauppi, Werner A. Kurz, Oliver L. Phillips, Anatoly Shvidenko, Simon L. Lewis, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Stephen Pacala, A David McGuire, Shilong Piao, Aapo Rautiainen, Stephen Sitch and, Daniel Hayes, is published in Science Express on 14 July 2011. 

Contact  

Hannah Isom
Press Officer, University of Leeds
T: +44 (0)113 343 5764
E: h.isom@leeds.ac.uk

SOURCE

Join the Discussion
Rate Article: Average 0 out of 5
register or log in to comment on this article!

0 Comments

Add Comment

Text Only 2000 character limit

Page 1 of 1

Research Exchange

Microscopes for the Non-Microscopist: Multidisciplinary Research Using Optical Imaging

Microscopes for the Non-Microscopist: Multidisciplinary Research Using Optical Imaging

Jul 5

High quality microscopy is increasingly used by scientists in new areas of research.

Bringing the Cell Image into Focus

Nov 2 2010

Improvements in transmission electron microscope (TEM) technology increase the power of this imaging tool for the study of cell biology.

Finding a Cure for Spinal Cord Injury with On-Demand LIMS

Oct 25 2010

The Miami Project to Cure Paralysis finds an on-demand laboratory information management system (LIMS) helps to accelerate discovery in its HCS projects.

Saving Cells: Image Processing for Improved Viability, Part II: Iterative Deconvolution

Oct 25 2010

3D light microscopy and deconvolution provide a means to investigate 3D structure, providing near-confocal quality images without the temporal requirements or potentially damaging phototoxicity associated with other 3D imaging technologies. This article is Part II in a series regarding viability, resolution improvement, and measurement in fluorescence imaging. Part I focused on spectral unmixing.

Evaluation of a New Nano-Type UV-Vis Spectrophotometer

Mar 3

Analysis of one- to four-microliter size samples for nucleic acids has become routine in many life science laboratories. However, until now, available instruments require considerable manipulation of the instrument and sample; some require manually recording the data. The user must typically lower and raise the arm manually, then wipe the sample manually from the target after each analysis. And fiberoptics used in some of these instruments are subject to deterioration.

Production of Recombinant Proteins and Monoclonal Antibodies in Hollow Fiber Bioreactors

Jan 25

While well-understood, robust and convenient, classical batch-style 2-D culture on non-porous supports or 3-D suspension culture in other devices are really not very biologically relevant models. Cell culture conditions can affect the quality of the antibody or protein produced.

Selecting Robots for Use in Drug Discovery and Testing

Dec 6 2010

Drug discovery and testing, with their need for speed, repeatability and verification, are ideally suited to benefit from robot automation. It is therefore not surprising that robots have been at the forefront of automation developments in both these areas.

HP Scalable Network Storage Systems for Life Sciences

Sep 13 2010

Life sciences research today is advancing exponentially, each step bringing us closer to the realization of truly personalized medicine–preventive care and treatments designed specifically for each individual. In the near future, PCPGM healthcare researchers expect to be able to use predictive genetic testing to create custom treatment plans for individuals and deliver dramatic improvements over today’s one-size-fits-all approach. But research capabilities are only part of the equation; current storage and operating capacities must also evolve to accommodate ever-expanding amounts of data before the goal of personalized medicine can be realized.

Using the Tecan Genesis Workstation to Automate a Cytometric Bead Array (CBA) Immunoassay

Mar 11 2010

The poster describe the process involved in automating a Cytometric Bead Array (CBA) immunoassay developed to measure relative concentrations of serum antibodies against Tetanus (TT), Sperm Whale Myoglobin (SWM) and Keyhole Limpet Hemocyanin (KLH) in KLH-immunized volunteers.

Ensuring Quality in Assays Performed with Automated Liquid Handlers

Feb 2 2010

The focus of this presentation is to highlight the need of ensuring quality in important assays performed with automated liquid handlers. Nearly all assays performed within a laboratory are volume-dependent. In turn, all concentrations of biological and chemical components in these assays, as well as the associated dilution protocols, are volume-dependent. Because analyte concentration is volume-dependent, an assay’s results might be falsely interpreted if liquid handler variability and inaccuracies are unknown or if the system(s) go unchecked for a long period.

Inkjet System for Protein Crystallography

Feb 1 2010

X-ray crystallography is used routinely by scientists to obtain the three dimensional structure of a biological molecule of interest.Such information can be used to determine how a pharmaceutical interacts with a protein target and what changes might improve functionality. However, the crystallization of macromolecules still remains a serious hindrance in structural determination despite impressive advances in screening methods and technologies.

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Nov 9 2009

Action selection is modulated by external stimuli either directly or via memory retrieval. In a constantly changing environment, animals have evolved attention-like processes to effectively filter the incoming sensory stream. These attention-like processes, in turn, are modulated by memory. The neurobiological nature of how attention, action selection and memory are inter-connected is unknown. We describe here new phenotypes of the memory mutant radish in the fruit fly Drosophila.

The skin microbiome

45 minutes ago

It has been brought to our attention that in Fig. 1 of the original article the morphology and localization of the Demodex mites were not accurate. We have corrected the figure to show a cartoon that is more representative of the straight body and short limbs of these mites, and...

Disease watch In the news

45 minutes ago

In this Disease Watch, our statement that the strain responsible for the enterohaemorrhagic Escherichia coli (EHEC) outbreak "is a rare strain that has never before been found in humans" was incorrect. It was initially reported that strain responsible, O104:H4, had previously...

Human olfactory receptor 17-40 as active part of a nanobiosensor: A microscopic investigation of its electrical properties

2 hours ago

Increasing attention has been recently devoted to protein-based nanobiosensors. The main reason is the huge number of possible technological applications, going from drug detection to cancer early diagnosis. Their operating model is based on the protein activation and the...

Computing fluxes and chemical potential distributions in biochemical networks: energy balance analysis of the human red blood cell

5 hours ago

The analysis of non-equilibrium steady states of biochemical reaction networks relies on finding the configurations of fluxes and chemical potentials satisfying stoichiometric (mass balance) and thermodynamic (energy balance) constraints. Efficient methods to explore such...

Prokariotic Cell Collection in Denmark

Nov 6 2009

I would like to know about a prokariotic cell collection in Denmark. Is there a cell bank in this country? I need a Lactobacillus strain for a fermentation assay and this information about the bank is very helpful for me.

Request for Entries

Oct 16 2009

Ask the Experts is your chance to get the answers to questions on applications, materials, methods, processes, and technologies. Email you question to bst_web@advantagemedia.com, and the editors of Bioscience Technology will find an appropriate expert to answer it. Watch this space in the future to see the questions your colleagues are posting.

STAY INFORMED: SUBSCRIBE TO

Magazine and E-mail Newsletters

Loading...
E-mail:   
Loading...

Free Life Science Industry
Subscriptions

Magazine

wireless week

Newsletters

newsletters

Sign up now



MULTIMEDIA

Video:

Viewing SureFocus Slides

Jun 11 2010

A demonstration of SureFocus Microscope Slides in the review of AFB Smears. SureFocus Slides are a patent-pending breakthrough in tuberculosis detection, as their fluorescent staining circle remains visible during review, Fluorescence Microscopy.

Podcasts:

Allen Institute for Brain Research

Allen Institute for Brain Research

Oct 14 2009

Discussed in this interview are both the mouse brain project and the human cortex project with an emphasis on the importance of these projects to neuroscience research.

Top Stories and Headlines
EVERY DAY!

FREE Email Newsletter

Information: