Epigenomic Research Illuminates Veiled Variants

Featured In: Genomics | Human Studies

Thursday, March 24, 2024

Get daily Bioscience Technology industry top stories and headlines - Sign up now!

newsvine diigo google
slashdot
Share
Loading...

Genes make up only a tiny percentage of the human genome. The rest, which has remained measurable but mysterious, may hold vital clues about the genetic origins of disease. Using a new mapping strategy, a collaborative team led by researchers at the Broad Institute of MIT and Harvard, Massachusetts General Hospital (MGH), and MIT has begun to assign meaning to the regions beyond our genes and has revealed how minute changes in these regions might be connected to common diseases. The researchers’ findings appear in the March 23 advance online issue of Nature.

The results have implications for interpreting genome-wide association studies – large-scale studies of hundreds or thousands of people in which scientists look across the genome for single “letter” changes or SNPs (single nucleotide polymorphisms) that influence the risk of developing a particular disease. The majority of SNPs associated with disease reside outside of genes and until now, very little was known about the functions of most of them.

“Our ultimate goal is to figure out how our genome dictates our biology,” said co-senior author Manolis Kellis, a Broad associate member and associate professor of computer science at MIT. “But 98.5 percent of the genome is non-protein coding, and those non-coding regions are generally devoid of annotation.”

The term “epigenome” refers to a layer of chemical information on top of the genetic code, which helps determine when and where (and in what types of cells) genes will be active. This layer of information consists of chemical modifications, or “chromatin marks,” that appear across the genetic landscape of every cell, and can differ dramatically between cell types.

In a previous study, the authors showed that specific combinations of these chromatin marks (known as “chromatin states”) can be used to annotate parts of the genome – namely to attach biological meaning to the stretches of As, Cs, Ts, and Gs that compose our DNA. However, many questions remained about how these annotations differ between cell types, and what these differences can reveal about human biology.

In the current study, the researchers mapped chromatin marks in nine different kinds of cells, including blood cells, liver cancer cells, skin cells, and embryonic cells. By looking at the chemical marks, the researchers were able to create maps showing the locations of key control elements in each cell type. The researchers then asked how chromatin marks change across cell types, and looked for matching patterns of activity between controlling elements and the expression of neighboring genes.

“We first annotated the elements and figured out which cell types they are active in,” said co-senior author Bradley Bernstein, a Broad senior associate member and Harvard Medical School (HMS) associate professor at Massachusetts General Hospital (MGH). “We could then begin to link the elements and put together a regulatory network.”

Having pieced together these networks connecting non-coding regions of the genome to the genes they control, the researchers could begin to interpret data from disease studies. The team studied a large compendium of genome-wide association studies (GWAS), looking to characterize non-coding SNPs associated with control regions in specific cell types.

“Across 10 association studies of various human diseases, we found a striking overlap between previously uncharacterized SNPs and the control region annotations in specific cell types,” said Kellis. “This suggests that these DNA changes are disrupting important regulatory elements and thus play a role in disease biology.”

The researchers confirmed the reliability of their approach by showing that SNPs were associated with the appropriate cell types. For example, SNPs from autoimmune diseases such as rheumatoid arthritis and lupus sit in regions that are only active in immune cells, and SNPs associated with cholesterol and metabolic disease sit in regions active in liver cells. While more in-depth, follow-up studies will be needed to confirm the biological significance of these connections, the current study can help guide the direction of these investigations.

“GWAS has identified hundreds of non-coding regions of the genome that influence human disease, but a major barrier to progress is that we remain quite ignorant of the functions of these non-coding regions,” said David Altshuler, deputy director at the Broad and an HMS professor at MGH, who was not involved in the study. “This remarkable and much-needed resource is a major step forward in helping researchers address that challenge.”

SNPs in the non-coding regions of the genome may have subtler biological effects than their counterparts that arise in genes because they can influence how much protein is produced. The researchers mainly focused on SNPs in enhancer regions, which help boost a gene’s expression, and their network connections to regulators that control them and genes that they target. Follow-up efforts can then focus on specific pieces of this network that could be targeted with drugs.

The team involved in this study hopes to expand its analysis to include many other cell types and map additional marks to expand their networks beyond enhancer regions. In the meantime, researchers involved in genome-wide association studies will be able to use the maps from this project to analyze non-coding SNPs in a new light.

“These maps can be used to come up with hypotheses about how the variants themselves are working and which ones are causal,” said Bernstein. “This resource now goes back to the GWAS community, which can use the maps to form and test new functional models.”

This research was supported by the National Human Genome Research Institute under an ENCODE grant, the Howard Hughes Medical Institute, the National Science Foundation, and the Sloan Foundation.

Source: The Eli and Edythe L. Broad Institute of Harvard and MIT

Join the Discussion
Rate Article: Average 0 out of 5
register or log in to comment on this article!

0 Comments

Add Comment

Text Only 2000 character limit

Page 1 of 1

Research Exchange

Bringing the Cell Image into Focus

Nov 2 2010

Improvements in transmission electron microscope (TEM) technology increase the power of this imaging tool for the study of cell biology.

Finding a Cure for Spinal Cord Injury with On-Demand LIMS

Oct 25 2010

The Miami Project to Cure Paralysis finds an on-demand laboratory information management system (LIMS) helps to accelerate discovery in its HCS projects.

Saving Cells: Image Processing for Improved Viability, Part II: Iterative Deconvolution

Oct 25 2010

3D light microscopy and deconvolution provide a means to investigate 3D structure, providing near-confocal quality images without the temporal requirements or potentially damaging phototoxicity associated with other 3D imaging technologies. This article is Part II in a series regarding viability, resolution improvement, and measurement in fluorescence imaging. Part I focused on spectral unmixing.

Saving Cells: Image Processing for Improved Viability

Sep 22 2010

This article is Part I of a two-part series regarding viability, resolution improvement, and measurement in fluorescence imaging. Part II will focus on deconvolution.

Evaluation of a New Nano-Type UV-Vis Spectrophotometer

Mar 3

Analysis of one- to four-microliter size samples for nucleic acids has become routine in many life science laboratories. However, until now, available instruments require considerable manipulation of the instrument and sample; some require manually recording the data. The user must typically lower and raise the arm manually, then wipe the sample manually from the target after each analysis. And fiberoptics used in some of these instruments are subject to deterioration.

Production of Recombinant Proteins and Monoclonal Antibodies in Hollow Fiber Bioreactors

Jan 25

While well-understood, robust and convenient, classical batch-style 2-D culture on non-porous supports or 3-D suspension culture in other devices are really not very biologically relevant models. Cell culture conditions can affect the quality of the antibody or protein produced.

Selecting Robots for Use in Drug Discovery and Testing

Dec 6 2010

Drug discovery and testing, with their need for speed, repeatability and verification, are ideally suited to benefit from robot automation. It is therefore not surprising that robots have been at the forefront of automation developments in both these areas.

HP Scalable Network Storage Systems for Life Sciences

Sep 13 2010

Life sciences research today is advancing exponentially, each step bringing us closer to the realization of truly personalized medicine–preventive care and treatments designed specifically for each individual. In the near future, PCPGM healthcare researchers expect to be able to use predictive genetic testing to create custom treatment plans for individuals and deliver dramatic improvements over today’s one-size-fits-all approach. But research capabilities are only part of the equation; current storage and operating capacities must also evolve to accommodate ever-expanding amounts of data before the goal of personalized medicine can be realized.

Using the Tecan Genesis Workstation to Automate a Cytometric Bead Array (CBA) Immunoassay

Mar 11 2010

The poster describe the process involved in automating a Cytometric Bead Array (CBA) immunoassay developed to measure relative concentrations of serum antibodies against Tetanus (TT), Sperm Whale Myoglobin (SWM) and Keyhole Limpet Hemocyanin (KLH) in KLH-immunized volunteers.

Ensuring Quality in Assays Performed with Automated Liquid Handlers

Feb 2 2010

The focus of this presentation is to highlight the need of ensuring quality in important assays performed with automated liquid handlers. Nearly all assays performed within a laboratory are volume-dependent. In turn, all concentrations of biological and chemical components in these assays, as well as the associated dilution protocols, are volume-dependent. Because analyte concentration is volume-dependent, an assay’s results might be falsely interpreted if liquid handler variability and inaccuracies are unknown or if the system(s) go unchecked for a long period.

Inkjet System for Protein Crystallography

Feb 1 2010

X-ray crystallography is used routinely by scientists to obtain the three dimensional structure of a biological molecule of interest.Such information can be used to determine how a pharmaceutical interacts with a protein target and what changes might improve functionality. However, the crystallization of macromolecules still remains a serious hindrance in structural determination despite impressive advances in screening methods and technologies.

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Nov 9 2009

Action selection is modulated by external stimuli either directly or via memory retrieval. In a constantly changing environment, animals have evolved attention-like processes to effectively filter the incoming sensory stream. These attention-like processes, in turn, are modulated by memory. The neurobiological nature of how attention, action selection and memory are inter-connected is unknown. We describe here new phenotypes of the memory mutant radish in the fruit fly Drosophila.

Aromatase inhibitors for ovulation induction and ovarian stimulation.

6 hours ago

Aromatase inhibitors (AIs) were originally developed for the treatment of advanced breast cancer in postmenopausal women. Their use in reproductive medicine has been extensively studied in the past decade. We reviewed the current strategies for ovulation...

Prokariotic Cell Collection in Denmark

Nov 6 2009

I would like to know about a prokariotic cell collection in Denmark. Is there a cell bank in this country? I need a Lactobacillus strain for a fermentation assay and this information about the bank is very helpful for me.

Request for Entries

Oct 16 2009

Ask the Experts is your chance to get the answers to questions on applications, materials, methods, processes, and technologies. Email you question to bst_web@advantagemedia.com, and the editors of Bioscience Technology will find an appropriate expert to answer it. Watch this space in the future to see the questions your colleagues are posting.

STAY INFORMED: SUBSCRIBE TO

Magazine and E-mail Newsletters

Loading...
E-mail:   

MULTIMEDIA

Video:

Viewing SureFocus Slides

Jun 11 2010

A demonstration of SureFocus Microscope Slides in the review of AFB Smears. SureFocus Slides are a patent-pending breakthrough in tuberculosis detection, as their fluorescent staining circle remains visible during review, Fluorescence Microscopy.

Podcasts:

Allen Institute for Brain Research

Allen Institute for Brain Research

Oct 14 2009

Discussed in this interview are both the mouse brain project and the human cortex project with an emphasis on the importance of these projects to neuroscience research.

Top Stories and Headlines
EVERYDAY!

FREE Email Newsletter

Information: