Loading...

Daily news and top headlines for life science research professionals

FREE Email Newsletter View Sample


New Silk Technology Preserves Heat-Sensitive Drugs for Months without Refrigeration

Featured In: Academia News

Tuesday, July 10, 2024

See today's top life science stories and headlines - Sign up now!

newsvine diigo google
slashdot
Share
Loading...

Researchers at Tufts University School of Engineering have discovered a way to maintain the potency of vaccines and other drugs -- that otherwise require refrigeration -- for months and possibly years at temperatures above 110 degrees F, by stabilizing them in a silk protein made from silkworm cocoons. Importantly, the pharmaceutical-infused silk can be made in a variety of forms such as microneedles, microvesicles and films that allow the non-refrigerated drugs to be stored and administered in a single device.

The Tufts findings address a serious obstacle to the effective use of life-saving pharmaceuticals: keeping them cold. Most vaccines, enzymes, and antibodies and many antibiotics and other drugs require constant refrigeration from manufacture to delivery to maintain their effectiveness.

International health experts estimate that nearly half of all global vaccines are lost due to breakdowns in the "cold chain." Even in industrialized nations, loss of drug efficacy at body temperature is a serious problem for advanced pharmaceutical delivery systems such as implantable drug-coated devices.

The research will be published before print in the Proceedings of the National Academy of Sciences (PNAS) Online Early Edition the week of July 9, 2012.

Tufts biomedical engineers led by David L. Kaplan, Ph.D., found that silk stabilization preserved the efficacy of the measles, mumps and rubella (MMR) vaccine, as well as penicillin and tetracycline, at a wide range of temperatures (at least up to 60 degrees C or 140 F) significantly better than other options such as collagen encapsulants, dried powders and solutions.

"Silk protein has a unique structure and chemistry that makes it strong, resistant to moisture, stable at extreme temperatures, and biocompatible, all of which make it very useful for stabilizing antibiotics, vaccines and other drugs. The fact that we can also make silk into microneedles to deliver a vaccine is an enormous added advantage that can potentially provide a lot of useful solutions to stabilization, distribution and delivery," says Kaplan, who has been studying silk for two decades.

Protein function depends on chains of amino acids folding into specific shapes. At higher temperatures or in the presence of water, the chains tend to unfold, then clump together, which renders them inactive. Silk fibroin is composed of interlocked crystalline sheets with numerous tiny hydrophobic pockets. The pockets trap and immobilize bioactive biomolecules -- keeping them from unfolding -- and also protect them from moisture. The end result is like enveloping a fragile material in a nanoscale Bubble Wrap.

According to the paper’s first author, Jeney Zhang, who is pursuing a Tufts doctorate in chemical and biological engineering, silk stabilization has "the potential to significantly change the way we store and deliver pharmaceuticals, especially in the developing world."

Measles is one of the leading killers of children worldwide. Without refrigeration, the MMR vaccine rapidly loses potency. But after six months of storage in freeze-dried silk films at body temperature (37 C) and at 113 F (45 C), all components of the vaccine retained approximately 85 percent of their initial potency.

Silk-stabilized antibiotics also retained high activity. Storage in silk films at body temperature resulted in no activity loss for tetracycline, compared with an 80 percent loss within four weeks of storage in solution. Even for films stored at 140 F (60 C), tetracycline activity loss was only 10 percent after two weeks, compared with 100 percent loss after two weeks of storage in solution. No activity loss was observed for penicillin stored in silk films at 60 C for 30 days; in contrast, total activity loss was observed within 24 hours when penicillin was stored in solution at the same temperature.

Silk stabilization also protected the tetracycline against degradation by light, a benefit that the researchers did not anticipate, according to co-author and research assistant professor Bruce Panilaitis. Panilaitis earned his Ph.D. in biology at Tufts Graduate School of Arts and Sciences before joining Kaplan's lab in 2001 as a postdoctoral fellow.

So far, Panilaitis adds, the researchers haven't found any pharmaceutical that they have been unable to stabilize. This could be a "universal storage and handling system."

Additional authors on the paper include Eleanor Pritchard, who earned her doctorate in biomedical engineering at Tufts and is now a postdoctoral fellow at St. Jude Children’s Research Hospital in Memphis; Xiao Hu, a biomedical engineering postdoctoral fellow who will join Rowan University as an assistant professor in September; Thomas Valentin, a biomedical engineering master's degree student; and Fiorenzo Omenetto, Ph.D., professor of biomedical engineering.

The research was supported by a grant from the National Institute of Biomedical Imaging and Bioengineering at the National Institutes of Health. It builds on a significant body of work previously published by Tufts biomedical engineers seeking to tap the potential of silk for a wide range of applications. In December 2011 researchers from Kaplan’s lab announced development of a silk-based microneedle system able to deliver precise amounts of drugs over time and without need for refrigeration.

Source: Tufts University

Join the Discussion
Rate Article: Average 0 out of 5
register or log in to comment on this article!

0 Comments

Add Comment

Text Only 2000 character limit

Page 1 of 1

Research Exchange

Safety Without Sacrifice

Safety Without Sacrifice

Jun 26

Liquid handling ergonomics and performance considerations

Three Tips to Help Manage Customization in Genomics LIMS Implementations

Nov 21 2011

Labs must consider three elements in evaluating genomics laboratory information management system (LIMS) to support the ever-changing workflow characteristics of next-generation sequencing.

How to Build an Integrated Microscopy System for Live Cell Mechanotransduction Studies

How to Build an Integrated Microscopy System for Live Cell Mechanotransduction Studies

Aug 2 2011

A new integrated microscopy system allows scientists to simultaneously stimulate and image live cell response in real-time.

Tips for Reducing Static Electricity

Tips for Reducing Static Electricity

Aug 1 2011

Static electricity can affect automated instrumentation within the lab.

Evaluation of a New Nano-Type UV-Vis Spectrophotometer

Mar 3 2011

Analysis of one- to four-microliter size samples for nucleic acids has become routine in many life science laboratories. However, until now, available instruments require considerable manipulation of the instrument and sample; some require manually recording the data. The user must typically lower and raise the arm manually, then wipe the sample manually from the target after each analysis. And fiberoptics used in some of these instruments are subject to deterioration.

Production of Recombinant Proteins and Monoclonal Antibodies in Hollow Fiber Bioreactors

Jan 25 2011

While well-understood, robust and convenient, classical batch-style 2-D culture on non-porous supports or 3-D suspension culture in other devices are really not very biologically relevant models. Cell culture conditions can affect the quality of the antibody or protein produced.

Selecting Robots for Use in Drug Discovery and Testing

Dec 6 2010

Drug discovery and testing, with their need for speed, repeatability and verification, are ideally suited to benefit from robot automation. It is therefore not surprising that robots have been at the forefront of automation developments in both these areas.

HP Scalable Network Storage Systems for Life Sciences

Sep 13 2010

Life sciences research today is advancing exponentially, each step bringing us closer to the realization of truly personalized medicine–preventive care and treatments designed specifically for each individual. In the near future, PCPGM healthcare researchers expect to be able to use predictive genetic testing to create custom treatment plans for individuals and deliver dramatic improvements over today’s one-size-fits-all approach. But research capabilities are only part of the equation; current storage and operating capacities must also evolve to accommodate ever-expanding amounts of data before the goal of personalized medicine can be realized.

Using the Tecan Genesis Workstation to Automate a Cytometric Bead Array (CBA) Immunoassay

Mar 11 2010

The poster describe the process involved in automating a Cytometric Bead Array (CBA) immunoassay developed to measure relative concentrations of serum antibodies against Tetanus (TT), Sperm Whale Myoglobin (SWM) and Keyhole Limpet Hemocyanin (KLH) in KLH-immunized volunteers.

Ensuring Quality in Assays Performed with Automated Liquid Handlers

Feb 2 2010

The focus of this presentation is to highlight the need of ensuring quality in important assays performed with automated liquid handlers. Nearly all assays performed within a laboratory are volume-dependent. In turn, all concentrations of biological and chemical components in these assays, as well as the associated dilution protocols, are volume-dependent. Because analyte concentration is volume-dependent, an assay’s results might be falsely interpreted if liquid handler variability and inaccuracies are unknown or if the system(s) go unchecked for a long period.

Inkjet System for Protein Crystallography

Feb 1 2010

X-ray crystallography is used routinely by scientists to obtain the three dimensional structure of a biological molecule of interest.Such information can be used to determine how a pharmaceutical interacts with a protein target and what changes might improve functionality. However, the crystallization of macromolecules still remains a serious hindrance in structural determination despite impressive advances in screening methods and technologies.

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Nov 9 2009

Action selection is modulated by external stimuli either directly or via memory retrieval. In a constantly changing environment, animals have evolved attention-like processes to effectively filter the incoming sensory stream. These attention-like processes, in turn, are modulated by memory. The neurobiological nature of how attention, action selection and memory are inter-connected is unknown. We describe here new phenotypes of the memory mutant radish in the fruit fly Drosophila.

Red Meat Consumption and Mortality: Results From 2 Prospective Cohort Studies

Mar 16

BACKGROUND: Red meat consumption has been associated with an increased risk of chronic diseases. However, its relationship with mortality remains uncertain. METHODS: We prospectively observed 37 698 men from the Health Professionals Follow-up Study (1986-2008)...

Structural analysis of eyespots: dynamics of morphogenic signals that govern elemental positions in butterfly wings.

Mar 15

ABSTRACT: BACKGROUND: To explain eyespot colour-pattern determination in butterfly wings, the induction model has been discussed based on colour-pattern analyses of various butterfly eyespots. However, a detailed structural analysis of eyespots that can serve as...

Prokariotic Cell Collection in Denmark

Nov 6 2009

I would like to know about a prokariotic cell collection in Denmark. Is there a cell bank in this country? I need a Lactobacillus strain for a fermentation assay and this information about the bank is very helpful for me.

Request for Entries

Oct 16 2009

Ask the Experts is your chance to get the answers to questions on applications, materials, methods, processes, and technologies. Email you question to bst_web@advantagemedia.com, and the editors of Bioscience Technology will find an appropriate expert to answer it. Watch this space in the future to see the questions your colleagues are posting.

STAY INFORMED: SUBSCRIBE TO

Magazine and E-mail Newsletters

Loading...
Loading...

Free Life Science Industry
Subscriptions

Magazine

wireless week

Newsletters

newsletters

Sign up now



MULTIMEDIA

Video:

Viewing SureFocus Slides

Jun 11 2010

A demonstration of SureFocus Microscope Slides in the review of AFB Smears. SureFocus Slides are a patent-pending breakthrough in tuberculosis detection, as their fluorescent staining circle remains visible during review, Fluorescence Microscopy.

Podcasts:

Allen Institute for Brain Research

Allen Institute for Brain Research

Oct 14 2009

Discussed in this interview are both the mouse brain project and the human cortex project with an emphasis on the importance of these projects to neuroscience research.

Top Stories and Headlines
EVERY DAY!

FREE Email Newsletter

Information: