Songbirds may hold key for vocal learning

Featured In: Instrumentation

By EurekAlert Wednesday, March 31, 2024

Loading...

HOUSTON – Whether you're a songbird or a human, there's a lot we can learn from our elders when learning vocalization. A University of Houston researcher was part of a team that uncovered the genome of the zebra finch, which may one day help people who suffer from speech impairments, learning disabilities and problems with forming social connections.

Preethi Gunaratne, an assistant professor of biology and biochemistry at UH, played a lead role in microRNA discovery and analysis in relation to changes in the auditory forebrain of zebra finches in response to song. This research eventually will be used to study vocal learning in humans. Wesley Warren from the Genome Sequencing Center at Washington University in St. Louis and David Clayton from the University of Illinois at Urbana-Champaign led the team of scientists.

Their findings are described in a paper titled "The Genome of the Zebra Finch: Special Insights into Vocal Learning and Communication," appearing April 1 in Nature, the weekly scientific journal for biological and physical sciences research.

Songbirds – and, in this case, the zebra finch (Taeniopygia guttata) – are the only animal model for studying the evolution of speech and language in humans. They have been studied as a paradigm to understand how vocal communication can be used to tell apart individuals when selecting partners during courtship and forming social boundaries.

"Interestingly, although both males and females are able to differentiate between different song types, the ability to learn and copy a particular song type that is specific to the family lineage is passed down only through the males," Gunaratne said. "Young males learn and copy the song that is vocalized by their father, and this song learning must be accomplished during early infancy. After learning the song of their father, the sons are able to vocalize the specific song of their father very accurately. Therefore, the songbird has much to offer in relation to our efforts to understand the role of learning and memory in acquired human speech."

Among the key findings of this paper is that although the overall structure of the zebra finch genome is similar to that of chickens, which do not learn or vocalize songs and are the only birds to have been sequenced until now, the genes expressed in the brain that have to do with neurological functions have evolved more rapidly in songbirds. In addition, Gunaratne was surprised to find that this ability to learn and vocalize engages a large number of RNAs (molecules involved in the transmission of genetic information) that do not code for proteins and were previously considered to be junk. In the last decade, she says, there has been a paradigm shift where small non-coding RNAs, called microRNAs, have emerged as important regulatory molecules that can diminish the levels of hundreds of genes that cooperate to form a network that supports a specific biological process. Each individual small RNA acts as a magnet to capture a specific set of gene transcripts.

Gunaratne, who is also an assistant professor in the pathology department at the Human Genome Sequencing Center at the Baylor College of Medicine, is a pioneer in the field of microRNAs in Houston. In collaboration with Clayton, who is a pioneer in the application of molecular genetics and genomics to songbird research, the team determined the complete set of microRNAs expressed in the auditory forebrain – the part of the brain that is involved in vocal learning – of male and female zebra finches exposed to song versus silent conditions. The auditory forebrain is of central importance in controlling the neural circuits needed for learning and vocalization of song in these birds.

The researchers found the set of microRNAs that are expressed in the auditory forebrain when a songbird is listening to a song is very different from the set of microRNAs that are expressed when the song is discontinued. A number of microRNAs that can potentially manipulate hundreds of genes that originally cooperated to support a specific function like song learning are induced in the absence of song. This allows the brain to clear out gene transcripts that are needed for song learning when they are no longer needed under the silent conditions.

"Similarly, when the young bird hears the father's song a second time, a new set of microRNAs that can potentially support song learning are expressed and now act to potentially clear gene transcripts that cooperate to support the brain function under silent conditions," Gunaratne said. "Basically, because a single microRNA can concurrently diminish the levels of hundreds of genes, they allow major shifts in gene networks to happen when we go from one situation to another."

Two of Gunaratne's graduate students, Ashley Benham and Jayantha Tennakoon, along with Jong Kim, an undergraduate student from her lab, and Ya-chi Lin, a graduate student from the Clayton lab, played important roles in this project. Their contributions on the details of the role of microRNAs in song learning in zebra finches is in preparation for yet another publication, demonstrating the type of student success essential to Tier-One status.

Gunaratne says this work would not have been possible without the Illumina Next Generation Sequencing instrument housed in the Institute for Molecular Design at UH. In 2008, UH became one of the first academic institutions to acquire state-of-the art sequencing technology that allows rapid sequencing of entire genomes within weeks. This investment has transformed the research of not only UH faculty, but also of a large number of faculty in the Texas Medical Center, as well as other national and international universities and institutions through collaborations with researchers at UH.

SOURCE

Join the Discussion
Rate Article: Average 0 out of 5
register or log in to comment on this article!

0 Comments

Add Comment

Text Only 2000 character limit

Page 1 of 1

Research Exchange

Successful Sample Identification

13 hours ago

2D Barcodes ensure that a multitude of samples can be tracked in a variety of storage conditions.

Multi-Parametric Cellular Analysis

Mar 23

Flow cytometers perform a variety of multi parametric applications and have been used for an expanding set of cell analysis applications over the past forty years.

Maintaining a Healthy Cell Culture Environment

Mar 23

Investing in best practices and products at the beginning of any experiment is the most time- and cost-effective way to approach cell culture.

Publishing Data That Conform to the MIQE Guidelines

Jan 22

Minimum information for publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines help researchers design qPCR experiments.

Step up to the MIQE

Mar 30

Over the years, polymerase chain reaction (PCR) has evolved into a readily automated, high throughput quantitative technology. Real-time quantitative PCR (qPCR) has become the industry standard for the detection and quantification of nucleic acids for multiple application, including quantification of RNA levels. But a lack of consensus among researchers on how to best perform and interpret qPCR experiments presents a major hurdle for advancement of the technology. This problem is exacerbated by insufficient experimental detail in published work, which impedes the ability of others to accurately evaluate or replicate reported results.

Fast Optimization of a Multiplex Influenza Identification Panel Using a Thermal Gradient

Mar 30

The year 2009 was marked by the emergence of a novel influenza A (H1N1) virus that infects humans. There is a need to identify the different strains of influenza virus for purposes of monitoring the H1N1 strain pandemic and for other epidemiological and scientific purposes.

Advantages of Monolithic Laser Combiner Technology in Confocal Microscopy Systems

Jan 6

Fluorescence microscopy techniques require a reliable light source at the desired wavelength or wavelengths, with minimal downtime for maintenance and alignment. Lasers are a popular light source, although the alignment and upkeep of laser combiners is a time-consuming prospect for many users.

Size-Exclusion Chromatography for Purification of Biomolecules

Dec 2 2009

Size-exclusion chromatography (SEC) is a popular method to separate biomolecules based on their size. Primarily, it is applied to the separation of biopolymers such as proteins and nucleic acids, i.e. water-soluble polymers.

Using the Tecan Genesis Workstation to Automate a Cytometric Bead Array (CBA) Immunoassay

Mar 11

The poster describe the process involved in automating a Cytometric Bead Array (CBA) immunoassay developed to measure relative concentrations of serum antibodies against Tetanus (TT), Sperm Whale Myoglobin (SWM) and Keyhole Limpet Hemocyanin (KLH) in KLH-immunized volunteers.

Ensuring Quality in Assays Performed with Automated Liquid Handlers

Feb 2

The focus of this presentation is to highlight the need of ensuring quality in important assays performed with automated liquid handlers. Nearly all assays performed within a laboratory are volume-dependent. In turn, all concentrations of biological and chemical components in these assays, as well as the associated dilution protocols, are volume-dependent. Because analyte concentration is volume-dependent, an assay’s results might be falsely interpreted if liquid handler variability and inaccuracies are unknown or if the system(s) go unchecked for a long period.

Inkjet System for Protein Crystallography

Feb 1

X-ray crystallography is used routinely by scientists to obtain the three dimensional structure of a biological molecule of interest.Such information can be used to determine how a pharmaceutical interacts with a protein target and what changes might improve functionality. However, the crystallization of macromolecules still remains a serious hindrance in structural determination despite impressive advances in screening methods and technologies.

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Nov 9 2009

Action selection is modulated by external stimuli either directly or via memory retrieval. In a constantly changing environment, animals have evolved attention-like processes to effectively filter the incoming sensory stream. These attention-like processes, in turn, are modulated by memory. The neurobiological nature of how attention, action selection and memory are inter-connected is unknown. We describe here new phenotypes of the memory mutant radish in the fruit fly Drosophila.

Type D personality among noncardiovascular patient populations: a systematic review.

Mar 30

OBJECTIVE: This article reviews all available literature concerning the implications of Type D personality (the conjoint effects of negative affectivity and social inhibition) among patients with noncardiovascular conditions. METHODS: Published papers were included if they...

STAT3 polymorphisms linked with idiopathic recurrent miscarriages.

Mar 30

PROBLEM: We investigated the association of signal transducers and activators of transcription (STAT)3 gene variants with idiopathic recurrent miscarriage (RM). METHOD OF STUDY: A case-control study involving 189 RM patients and 244 control women was carried out. STAT3...

Prokariotic Cell Collection in Denmark

Nov 6 2009

I would like to know about a prokariotic cell collection in Denmark. Is there a cell bank in this country? I need a Lactobacillus strain for a fermentation assay and this information about the bank is very helpful for me.

Request for Entries

Oct 16 2009

Ask the Experts is your chance to get the answers to questions on applications, materials, methods, processes, and technologies. Email you question to bst_web@advantagemedia.com, and the editors of Bioscience Technology will find an appropriate expert to answer it. Watch this space in the future to see the questions your colleagues are posting.

STAY INFORMED: SUBSCRIBE TO

Magazine and E-mail Newsletters

Loading...
E-mail:   

MULTIMEDIA

Video:

Neuroscience Diseases of The Brain and How The Mind Emerges

Neuroscience Diseases of The Brain and How The Mind Emerges

Nov 8 2009

Dennis Choi, director of Emory Universitys Neuroscience Center, is renowned for his groundbreaking research on brain and spinal cord injury.

Podcasts:

Allen Institute for Brain Research

Allen Institute for Brain Research

Oct 14 2009

Discussed in this interview are both the mouse brain project and the human cortex project with an emphasis on the importance of these projects to neuroscience research.

Information: