Powerful new method allows scientists to probe gene activation

Featured In: Instrumentation

By EurekAlert Thursday, April 8, 2024

Loading...

NYU Langone Medical Center researchers have developed a powerful new method to investigate the discrete steps necessary to turn on individual genes and examine how the process goes wrong in cancer and other diseases. The finding, based on seven years of research and described in the April 9 issue of Molecular Cell, allows scientists to investigate the unfolding of DNA, a process required for gene activation.

"The new methodology allows us to examine the steps that turn on individual genes in order to figure out what part of the process breaks down in diseases like cancer, " says Danny Reinberg, PhD, professor of biochemistry at NYU Langone Medical Center and a Howard Hughes Medical Institute Investigator, who led the study. "Right now we have the book with a lot of chapters. The idea now is to read each of those chapters and analyze how things happen. After that, we can start devising assays to test for steps or molecules we want to target," says Dr. Reinberg, who has been studying the molecular processes governing how genetic information is transferred for more than 20 years. He is a leader in the field of epigenetics, which probes the modifications that control when genes are expressed, many of which are linked to a wide variety of diseases.

DNA, in its simplest form, is a long double-stranded helix. Inside the cell's nucleus, however, the helix is further twisted and wrapped around protein complexes to form much more compact fibers called chromatin. For example, chromosome 22, one of the smallest human chromosomes, would be about 1.5 centimeters long as a simple DNA helix, but twisted around the protein complexes, it is just two micrometers, a 10,000-fold compression.

However, the degree of compaction is dynamic and is part of the way cells control gene transcription. When a gene is inactive, its chromatin is packed together more tightly than when the gene is actively transcribed. Although scientists have known about these changes for years, they didn't know how the cell regulated the shift from the most highly compact fiber, which is 30 nanometers across (about the size of the tiniest particle of smoke from cooking oil), to the less compact one, which is just 11 nanometers. They wanted to understand the process, but faced a major hurdle—no one knew how to recreate a 30 nanometer fiber in a test tube.

With their new study, Dr. Reinberg and his colleagues have cleared that hurdle, allowing the team to begin teasing apart the steps to unwind the fiber and start transcription in a test gene. "It was a lot of background work, but in the end we got a nice story that, I believe, is the only story out there that goes from highly compact chromatin to transcription," says Dr. Reinberg.

Once the fiber was in the assay tubes, the team found that a DNA regulatory protein called the retinoic acid receptor (RAR) could access its binding site on the DNA, even when the chromatin was in its most tightly wound state. When researchers added the hormone that stimulates RAR, called retinoic acid, a derivative of vitamin A, to the system, things started to change. . The hormone-bound RAR began to unwind the chromatin and move aside large protein complexes, called nucleosomes, to make room for other DNA unwinding proteins and transcription factors. As they added in more and more factors, the DNA continued to loosen up, until finally, the team could see transcription start from their test gene PEPCK, which is controlled by RAR.

Significantly, electron microscopy showed that the 30 nanometer fiber formed in the test tube resembles the one in cells. Moreover, as the team added individual factors to the system, they used biochemical assays, such as DNA cutting experiments, to show that the nucleosome movement mimicked what happens when the PEPCK gene is turned on by retinoic acid in living cells.

SOURCE

Join the Discussion
Rate Article: Average 5 out of 5
register or log in to comment on this article!

0 Comments

Add Comment

Text Only 2000 character limit

Page 1 of 1

Research Exchange

Successful Sample Identification

Apr 1

2D Barcodes ensure that a multitude of samples can be tracked in a variety of storage conditions.

Multi-Parametric Cellular Analysis

Mar 23

Flow cytometers perform a variety of multi parametric applications and have been used for an expanding set of cell analysis applications over the past forty years.

Maintaining a Healthy Cell Culture Environment

Mar 23

Investing in best practices and products at the beginning of any experiment is the most time- and cost-effective way to approach cell culture.

Publishing Data That Conform to the MIQE Guidelines

Jan 22

Minimum information for publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines help researchers design qPCR experiments.

Step up to the MIQE

Mar 30

Over the years, polymerase chain reaction (PCR) has evolved into a readily automated, high throughput quantitative technology. Real-time quantitative PCR (qPCR) has become the industry standard for the detection and quantification of nucleic acids for multiple application, including quantification of RNA levels. But a lack of consensus among researchers on how to best perform and interpret qPCR experiments presents a major hurdle for advancement of the technology. This problem is exacerbated by insufficient experimental detail in published work, which impedes the ability of others to accurately evaluate or replicate reported results.

Fast Optimization of a Multiplex Influenza Identification Panel Using a Thermal Gradient

Mar 30

The year 2009 was marked by the emergence of a novel influenza A (H1N1) virus that infects humans. There is a need to identify the different strains of influenza virus for purposes of monitoring the H1N1 strain pandemic and for other epidemiological and scientific purposes.

Advantages of Monolithic Laser Combiner Technology in Confocal Microscopy Systems

Jan 6

Fluorescence microscopy techniques require a reliable light source at the desired wavelength or wavelengths, with minimal downtime for maintenance and alignment. Lasers are a popular light source, although the alignment and upkeep of laser combiners is a time-consuming prospect for many users.

Size-Exclusion Chromatography for Purification of Biomolecules

Dec 2 2009

Size-exclusion chromatography (SEC) is a popular method to separate biomolecules based on their size. Primarily, it is applied to the separation of biopolymers such as proteins and nucleic acids, i.e. water-soluble polymers.

Using the Tecan Genesis Workstation to Automate a Cytometric Bead Array (CBA) Immunoassay

Mar 11

The poster describe the process involved in automating a Cytometric Bead Array (CBA) immunoassay developed to measure relative concentrations of serum antibodies against Tetanus (TT), Sperm Whale Myoglobin (SWM) and Keyhole Limpet Hemocyanin (KLH) in KLH-immunized volunteers.

Ensuring Quality in Assays Performed with Automated Liquid Handlers

Feb 2

The focus of this presentation is to highlight the need of ensuring quality in important assays performed with automated liquid handlers. Nearly all assays performed within a laboratory are volume-dependent. In turn, all concentrations of biological and chemical components in these assays, as well as the associated dilution protocols, are volume-dependent. Because analyte concentration is volume-dependent, an assay’s results might be falsely interpreted if liquid handler variability and inaccuracies are unknown or if the system(s) go unchecked for a long period.

Inkjet System for Protein Crystallography

Feb 1

X-ray crystallography is used routinely by scientists to obtain the three dimensional structure of a biological molecule of interest.Such information can be used to determine how a pharmaceutical interacts with a protein target and what changes might improve functionality. However, the crystallization of macromolecules still remains a serious hindrance in structural determination despite impressive advances in screening methods and technologies.

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Nov 9 2009

Action selection is modulated by external stimuli either directly or via memory retrieval. In a constantly changing environment, animals have evolved attention-like processes to effectively filter the incoming sensory stream. These attention-like processes, in turn, are modulated by memory. The neurobiological nature of how attention, action selection and memory are inter-connected is unknown. We describe here new phenotypes of the memory mutant radish in the fruit fly Drosophila.

Type D personality among noncardiovascular patient populations: a systematic review.

Mar 30

OBJECTIVE: This article reviews all available literature concerning the implications of Type D personality (the conjoint effects of negative affectivity and social inhibition) among patients with noncardiovascular conditions. METHODS: Published papers were included if they...

STAT3 polymorphisms linked with idiopathic recurrent miscarriages.

Mar 30

PROBLEM: We investigated the association of signal transducers and activators of transcription (STAT)3 gene variants with idiopathic recurrent miscarriage (RM). METHOD OF STUDY: A case-control study involving 189 RM patients and 244 control women was carried out. STAT3...

Prokariotic Cell Collection in Denmark

Nov 6 2009

I would like to know about a prokariotic cell collection in Denmark. Is there a cell bank in this country? I need a Lactobacillus strain for a fermentation assay and this information about the bank is very helpful for me.

Request for Entries

Oct 16 2009

Ask the Experts is your chance to get the answers to questions on applications, materials, methods, processes, and technologies. Email you question to bst_web@advantagemedia.com, and the editors of Bioscience Technology will find an appropriate expert to answer it. Watch this space in the future to see the questions your colleagues are posting.

STAY INFORMED: SUBSCRIBE TO

Magazine and E-mail Newsletters

Loading...
E-mail:   

MULTIMEDIA

Video:

Neuroscience Diseases of The Brain and How The Mind Emerges

Neuroscience Diseases of The Brain and How The Mind Emerges

Nov 8 2009

Dennis Choi, director of Emory Universitys Neuroscience Center, is renowned for his groundbreaking research on brain and spinal cord injury.

Podcasts:

Allen Institute for Brain Research

Allen Institute for Brain Research

Oct 14 2009

Discussed in this interview are both the mouse brain project and the human cortex project with an emphasis on the importance of these projects to neuroscience research.

Information: