Researchers modify virus to hunt down and wipe out cancer cells

Featured In: International News | Cancer | Europe

By University of Leeds Friday, April 23, 2024

newsvine diigo google
slashdot
Share
Loading...
Cancer Research UK scientists at the University of Leeds have developed a new way of modifying viruses to seek out and destroy cancer cells, according to research published in Gene Therapy. The researchers exploited the unique markers that appear on the surface of cancer cells to engineer a range of proteins that recognise and attach to these markers. These 'targeting' proteins can be added to a virus so that it recognises and infiltrates cancer cells.

The virus can then deliver genes that can make cancer cells more sensitive to drugs, introduce 'suicide' genes to the cancer cell or replace the missing and defective genes that caused the cancer to develop - an approach called gene therapy.

The scientists developed their system by engineering these 'retargeting' proteins to recognise markers on the surface of bladder cancer cells, and potentially to any kind of cancer. When tested in the lab the virus was able to recognise and enter the cancer cells with these markers. They were also able to add these retargeting proteins to an existing gene therapy virus so that it recognised and attacked these bladder cancer cells, increasing their drug sensitivity.

Gene therapy has had limited success so far, mainly because the approach to deliver such treatments have not been efficient or specific enough to only target tumour cells.

University of Leeds scientist Dr John Chester, who led the Cancer Research UK funded study, said: "Gene therapies have been out of fashion over the last couple of years. This isn't an indication that they don't work; just that we haven't found the best way to use them yet. Our research points to a new method to construct viruses for gene therapy and has so far been promising in the lab. We now need to test these gene therapies in patients to see if they are as effective treating cancer as our research suggests."

They propose a number of possible uses for their system. In the first approach, a targeting protein that recognises a range of tumours could be combined with an existing gene therapy virus.
Another approach involves tailoring the targeting proteins to an individual patient. By examining the markers on a patient's tumour it would be possible to add a re-targeting protein designed specifically for their cancer to a gene therapy virus.

Dr Chester added: "We also found that we weren't limited to using only one targeting protein for each virus. We were also able to combine the virus with two different targeting proteins so that our virus can target a range of different tumour markers. This approach could be a step forward for gene therapy, particularly as it is quicker, easier and cheaper to mix and match the targeting proteins rather than engineer a completely new gene therapy virus."

Dr Lesley Walker, director of cancer information at Cancer Research UK, said: "This exciting early laboratory work points to a new way of attacking cancer cells by targeting the unique markers on cancer cells. It could have real benefits for patients with treatments tailored to their cancer but we first have to test it through clinical trials."

SOURCE

Join the Discussion
Rate Article: Average 5 out of 5
register or log in to comment on this article!

0 Comments

Add Comment

Text Only 2000 character limit

Page 1 of 1

Research Exchange

Bringing the Cell Image into Focus

Nov 2 2010

Improvements in transmission electron microscope (TEM) technology increase the power of this imaging tool for the study of cell biology.

Finding a Cure for Spinal Cord Injury with On-Demand LIMS

Oct 25 2010

The Miami Project to Cure Paralysis finds an on-demand laboratory information management system (LIMS) helps to accelerate discovery in its HCS projects.

Saving Cells: Image Processing for Improved Viability, Part II: Iterative Deconvolution

Oct 25 2010

3D light microscopy and deconvolution provide a means to investigate 3D structure, providing near-confocal quality images without the temporal requirements or potentially damaging phototoxicity associated with other 3D imaging technologies. This article is Part II in a series regarding viability, resolution improvement, and measurement in fluorescence imaging. Part I focused on spectral unmixing.

Saving Cells: Image Processing for Improved Viability

Sep 22 2010

This article is Part I of a two-part series regarding viability, resolution improvement, and measurement in fluorescence imaging. Part II will focus on deconvolution.

Production of Recombinant Proteins and Monoclonal Antibodies in Hollow Fiber Bioreactors

Jan 25

While well-understood, robust and convenient, classical batch-style 2-D culture on non-porous supports or 3-D suspension culture in other devices are really not very biologically relevant models. Cell culture conditions can affect the quality of the antibody or protein produced.

Selecting Robots for Use in Drug Discovery and Testing

Dec 6 2010

Drug discovery and testing, with their need for speed, repeatability and verification, are ideally suited to benefit from robot automation. It is therefore not surprising that robots have been at the forefront of automation developments in both these areas.

HP Scalable Network Storage Systems for Life Sciences

Sep 13 2010

Life sciences research today is advancing exponentially, each step bringing us closer to the realization of truly personalized medicine–preventive care and treatments designed specifically for each individual. In the near future, PCPGM healthcare researchers expect to be able to use predictive genetic testing to create custom treatment plans for individuals and deliver dramatic improvements over today’s one-size-fits-all approach. But research capabilities are only part of the equation; current storage and operating capacities must also evolve to accommodate ever-expanding amounts of data before the goal of personalized medicine can be realized.

Step up to the MIQE

Mar 30 2010

Over the years, polymerase chain reaction (PCR) has evolved into a readily automated, high throughput quantitative technology. Real-time quantitative PCR (qPCR) has become the industry standard for the detection and quantification of nucleic acids for multiple application, including quantification of RNA levels. But a lack of consensus among researchers on how to best perform and interpret qPCR experiments presents a major hurdle for advancement of the technology. This problem is exacerbated by insufficient experimental detail in published work, which impedes the ability of others to accurately evaluate or replicate reported results.

Using the Tecan Genesis Workstation to Automate a Cytometric Bead Array (CBA) Immunoassay

Mar 11 2010

The poster describe the process involved in automating a Cytometric Bead Array (CBA) immunoassay developed to measure relative concentrations of serum antibodies against Tetanus (TT), Sperm Whale Myoglobin (SWM) and Keyhole Limpet Hemocyanin (KLH) in KLH-immunized volunteers.

Ensuring Quality in Assays Performed with Automated Liquid Handlers

Feb 2 2010

The focus of this presentation is to highlight the need of ensuring quality in important assays performed with automated liquid handlers. Nearly all assays performed within a laboratory are volume-dependent. In turn, all concentrations of biological and chemical components in these assays, as well as the associated dilution protocols, are volume-dependent. Because analyte concentration is volume-dependent, an assay’s results might be falsely interpreted if liquid handler variability and inaccuracies are unknown or if the system(s) go unchecked for a long period.

Inkjet System for Protein Crystallography

Feb 1 2010

X-ray crystallography is used routinely by scientists to obtain the three dimensional structure of a biological molecule of interest.Such information can be used to determine how a pharmaceutical interacts with a protein target and what changes might improve functionality. However, the crystallization of macromolecules still remains a serious hindrance in structural determination despite impressive advances in screening methods and technologies.

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Nov 9 2009

Action selection is modulated by external stimuli either directly or via memory retrieval. In a constantly changing environment, animals have evolved attention-like processes to effectively filter the incoming sensory stream. These attention-like processes, in turn, are modulated by memory. The neurobiological nature of how attention, action selection and memory are inter-connected is unknown. We describe here new phenotypes of the memory mutant radish in the fruit fly Drosophila.

CK1 activates minus-end directed transport of membrane organelles along microtubules.

3 hours ago

Microtubule (MT) -based organelle transport is driven by MT motor proteins that move cargoes towards MT minus-ends clustered in the cell center (dyneins), or plus-ends extended to the periphery (kinesins). Cells are able to rapidly switch the direction of...

A novel immunity system for bacterial nucleic acid degrading toxins and its recruitment in various eukaryotic and DNA viral systems.

3 hours ago

The use of nucleases as toxins for defense, offense or addiction of selfish elements is widely encountered across all life forms. Using sensitive sequence profile analysis methods, we characterize a novel superfamily (the SUKH superfamily) that unites a diverse...

Prokariotic Cell Collection in Denmark

Nov 6 2009

I would like to know about a prokariotic cell collection in Denmark. Is there a cell bank in this country? I need a Lactobacillus strain for a fermentation assay and this information about the bank is very helpful for me.

Request for Entries

Oct 16 2009

Ask the Experts is your chance to get the answers to questions on applications, materials, methods, processes, and technologies. Email you question to bst_web@advantagemedia.com, and the editors of Bioscience Technology will find an appropriate expert to answer it. Watch this space in the future to see the questions your colleagues are posting.

STAY INFORMED: SUBSCRIBE TO

Magazine and E-mail Newsletters

Loading...
E-mail:   

MULTIMEDIA

Video:

Viewing SureFocus Slides

Jun 11 2010

A demonstration of SureFocus Microscope Slides in the review of AFB Smears. SureFocus Slides are a patent-pending breakthrough in tuberculosis detection, as their fluorescent staining circle remains visible during review, Fluorescence Microscopy.

Podcasts:

Allen Institute for Brain Research

Allen Institute for Brain Research

Oct 14 2009

Discussed in this interview are both the mouse brain project and the human cortex project with an emphasis on the importance of these projects to neuroscience research.

Information: