Protein Critical for Insulin Secretion May be Contributor to Diabetes

Featured In: Disease Research | Academia News | Life Science Pulse Newsletter

Tuesday, October 27, 2024

Loading...

A cellular protein from a family involved in several human diseases is crucial for the proper production and release of insulin, new research has found, suggesting that the protein might play a role in diabetes. Mice lacking the ClC-3 channel, a passageway that allows negatively charged chloride ions to pass through cell membranes, have only one-fifth the circulating insulin of normal mice, according to research published in the journal Cell Metabolism.

Researchers Deborah Nelson and Louis Philipson of the University of Chicago, senior authors on the paper, argue that the finding may explain a portion of what goes wrong in Type 2 diabetes and could help doctors find rare patients whose diabetes has a previously-undetected genetic origin.

"Chloride regulation is not really well understood, but it's at the heart of cystic fibrosis, and it is related to the regulation of how insulin gets made," said Philipson, professor of medicine and medical director of the Kovler Diabetes Center at the University of Chicago. "Now we see that it's a critical feature of how insulin gets converted from a precursor form to its most active form."

Insulin is made and released by specialized pancreas cells called Beta-cells. The cell first synthesizes a protein called pro-insulin, discovered forty years ago at the University of Chicago by Donald Steiner, which is then put inside structures called secretory granules. Inside the secretory granule, proinsulin is chemically converted into insulin, and the granule moves to the cell surface where it can release insulin into the blood. Steiner discovered that the conversion of proinsulin to insulin must happen in an acidic environment, but how the granules make themselves acidic was unknown.

A team lead by Ludmila Deriy, a research assistant professor in Nelson's laboratory, studied genetic knockout mice missing the ClC-3 chloride channel. The blood of those mice contained lower levels of insulin and cellular measurements discovered that fewer granules were released by Beta-cells from ClC-3 knockouts and that the granules of ClC-3 knockout mice were less acidic than those from normal mice.

High-powered electron microscope images allowed researchers to observe that the granules of ClC-3 knockout mice contained higher amounts of proinsulin than granules from normal mice. Missing ClC-3 therefore appears to cause a dramatic slowdown of the conversion of proinsulin to insulin inside the granules, said Nelson, professor of neurobiology at the University of Chicago.

"Not only is release down, but what is released is not as efficacious a molecule," Nelson said. "It's pro-insulin rather insulin, if anything's released at all."

A mutation in the function of ClC-3 in humans could very well be the cause of a select few cases of juvenile diabetes, Nelson and Philipson said. However, while other ClC proteins have been linked to bone, muscle and kidney disease, no human case of diabetes has yet been linked to the function of this specific protein. Because ClC-3 knockout mice also experience epileptic seizures, a patient diagnosed with both epilepsy and diabetes could potentially have an undetected defect in their ClC-3 channel.

"If it happens that there's epilepsy and diabetes, it's not currently recognized as a syndrome," Philipson said. "We would be extremely interested in cases like that."

Finding a patient with this rare form of genetically-caused diabetes could be aided by efforts such as Lilly's Law, an Illinois legislation signed in August that created a statewide diabetes registry. The law requires that doctors report all diagnoses of children younger than 12 months to the state Department of Public Health. Scientists can then test those children to see if their disease is caused by a genetic mutation, knowledge that can improve the child's treatment.

The law is named for Lilly Jaffe, a girl diagnosed with Type 1 diabetes that was treated by Philipson and University of Chicago Medical Center colleagues in 2006. Lilly was found to have a rare genetic mutation in a different cellular protein, meaning her disease was treatable with oral medication rather than insulin injections.

A mutation of the ClC-3 channel would probably still be treated with insulin rather than an oral medication. But observing ClC-3 function in humans may provide insight into Type 2 diabetes as well, Philipson said, as the disruption of insulin production and secretion resembles cellular effects seen in adult-onset diabetes.

"We know that Type 2 diabetes is a progressive illness where insulin secretion is high and then goes down over time, but why does it do that? This ties some connection between chloride channels and granular function to the ability of insulin to come out of the cell," Philipson said. "This could be an important pathway in Type 2 diabetes, so it's not just the rare patient that's affected, it's 25 million people in the United States."

Source: The University of Chicago Medical Center

Join the Discussion
Rate Article: Average 0 out of 5
register or log in to comment on this article!

0 Comments

Add Comment

Text Only 2000 character limit

Page 1 of 1

Research Exchange

Simultaneous Measurement of Multiple Signaling Pathways in Human Leukemias Using Flow Cytometry

May 24

Next generation assays will need to be robust and standardized in order to make the transition from a research procedure to a routine clinical assay. Flow cytometry provides a unique and sensitive method to accomplish these requirements.

Automated Forensic DNA Methods: Relieving the Pain of Validation

Apr 21

Automation can increase a forensics lab's sample processing capacity, but it can also add to the complexity of system verification and validation.

Successful Sample Identification

Apr 1

2D Barcodes ensure that a multitude of samples can be tracked in a variety of storage conditions.

Multi-Parametric Cellular Analysis

Mar 23

Flow cytometers perform a variety of multi parametric applications and have been used for an expanding set of cell analysis applications over the past forty years.

Step up to the MIQE

Mar 30

Over the years, polymerase chain reaction (PCR) has evolved into a readily automated, high throughput quantitative technology. Real-time quantitative PCR (qPCR) has become the industry standard for the detection and quantification of nucleic acids for multiple application, including quantification of RNA levels. But a lack of consensus among researchers on how to best perform and interpret qPCR experiments presents a major hurdle for advancement of the technology. This problem is exacerbated by insufficient experimental detail in published work, which impedes the ability of others to accurately evaluate or replicate reported results.

Fast Optimization of a Multiplex Influenza Identification Panel Using a Thermal Gradient

Mar 30

The year 2009 was marked by the emergence of a novel influenza A (H1N1) virus that infects humans. There is a need to identify the different strains of influenza virus for purposes of monitoring the H1N1 strain pandemic and for other epidemiological and scientific purposes.

Advantages of Monolithic Laser Combiner Technology in Confocal Microscopy Systems

Jan 6

Fluorescence microscopy techniques require a reliable light source at the desired wavelength or wavelengths, with minimal downtime for maintenance and alignment. Lasers are a popular light source, although the alignment and upkeep of laser combiners is a time-consuming prospect for many users.

Size-Exclusion Chromatography for Purification of Biomolecules

Dec 2 2009

Size-exclusion chromatography (SEC) is a popular method to separate biomolecules based on their size. Primarily, it is applied to the separation of biopolymers such as proteins and nucleic acids, i.e. water-soluble polymers.

Using the Tecan Genesis Workstation to Automate a Cytometric Bead Array (CBA) Immunoassay

Mar 11

The poster describe the process involved in automating a Cytometric Bead Array (CBA) immunoassay developed to measure relative concentrations of serum antibodies against Tetanus (TT), Sperm Whale Myoglobin (SWM) and Keyhole Limpet Hemocyanin (KLH) in KLH-immunized volunteers.

Ensuring Quality in Assays Performed with Automated Liquid Handlers

Feb 2

The focus of this presentation is to highlight the need of ensuring quality in important assays performed with automated liquid handlers. Nearly all assays performed within a laboratory are volume-dependent. In turn, all concentrations of biological and chemical components in these assays, as well as the associated dilution protocols, are volume-dependent. Because analyte concentration is volume-dependent, an assay’s results might be falsely interpreted if liquid handler variability and inaccuracies are unknown or if the system(s) go unchecked for a long period.

Inkjet System for Protein Crystallography

Feb 1

X-ray crystallography is used routinely by scientists to obtain the three dimensional structure of a biological molecule of interest.Such information can be used to determine how a pharmaceutical interacts with a protein target and what changes might improve functionality. However, the crystallization of macromolecules still remains a serious hindrance in structural determination despite impressive advances in screening methods and technologies.

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Nov 9 2009

Action selection is modulated by external stimuli either directly or via memory retrieval. In a constantly changing environment, animals have evolved attention-like processes to effectively filter the incoming sensory stream. These attention-like processes, in turn, are modulated by memory. The neurobiological nature of how attention, action selection and memory are inter-connected is unknown. We describe here new phenotypes of the memory mutant radish in the fruit fly Drosophila.

Prokariotic Cell Collection in Denmark

Nov 6 2009

I would like to know about a prokariotic cell collection in Denmark. Is there a cell bank in this country? I need a Lactobacillus strain for a fermentation assay and this information about the bank is very helpful for me.

Request for Entries

Oct 16 2009

Ask the Experts is your chance to get the answers to questions on applications, materials, methods, processes, and technologies. Email you question to bst_web@advantagemedia.com, and the editors of Bioscience Technology will find an appropriate expert to answer it. Watch this space in the future to see the questions your colleagues are posting.

STAY INFORMED: SUBSCRIBE TO

Magazine and E-mail Newsletters

Loading...
E-mail:   

MULTIMEDIA

Video:

Neuroscience Diseases of The Brain and How The Mind Emerges

Neuroscience Diseases of The Brain and How The Mind Emerges

Nov 8 2009

Dennis Choi, director of Emory Universitys Neuroscience Center, is renowned for his groundbreaking research on brain and spinal cord injury.

Podcasts:

Allen Institute for Brain Research

Allen Institute for Brain Research

Oct 14 2009

Discussed in this interview are both the mouse brain project and the human cortex project with an emphasis on the importance of these projects to neuroscience research.

Information: