Behavior of Single Protein Observed in Unprecedented Detail

Featured In: Academia News | Proteomics | Protein Analysis

Thursday, March 11, 2024

Loading...

For the first time, researchers have been able to confine and study an individual protein, one that plays a key role in photosynthesis, without having to pin it down so tightly as to alter its fundamental behavior.

In the first practical application to proteins of a recently developed technique, two Stanford chemists were able to make detailed observations of the dynamic behavior of the molecule for more than one second, a 50- to 100-fold increase in viewing time compared to other methods, and thereby "set a new standard in single-molecule spectroscopy," according to a commentary in the March issue of Nature Chemistry.

The groundbreaking study is described in a paper by Stanford chemists W. E. Moerner and Randall Goldsmith in that issue, now available online. The commentary was written by researchers not involved in the study.

Observing molecules one at a time is valuable because it lets researchers get a clear picture of that molecule's changing behavior over time, without the picture being confused by the presence of other molecules.

Up until now, researchers have had to remove a molecule from its normal environment – typically a solution such as the bloodstream or the fluids inside a cell – and "basically staple it to some surface such as a glass slide or a large plastic bead, or imbed it in a synthetic polymer to observe it," said Goldsmith, a postdoctoral researcher in chemistry.

The result, he said, is like trying to discern how a tiger behaves in the wild by watching it pace back and forth in a cage at the zoo. "You have every reason to be suspicious that you might profoundly alter the behavior of the molecule by binding it to a surface," Goldsmith said.

That perspective is buttressed by the results of their study, in which they "trapped" in solution a molecule of a fluorescent photosynthetic protein called allophycocyanin, which is found in red algae and cyanobacteria (formerly known as blue-green algae). Both algae hold promise as key components in next-generation solar technologies and biofuels.

Moerner, a professor of chemistry, and Goldsmith used a device developed in Moerner's lab several years ago by former graduate student and postdoctoral scholar Adam Cohen, called an Anti-Brownian Electrokinetic (ABEL) trap. In his thesis work Cohen used the trap to precisely measure shape fluctuations in single DNA molecules before starting his own academic career at Harvard.

Brownian motion is the random movement of small particles in a gas or liquid. The movement arises from the particles being bumped by molecules of the fluid; the trap works by cancelling out a molecule's Brownian motion. Goldsmith described the method this way: "If the molecule moves east, we give it a kick west. If it moves west, we give it a kick back east. And we have that process going about 40,000 times a second."

The "kicks" are produced by controlled flows of the solution in which the molecule is placed for observation. The flows are driven by four electrodes evenly spaced around the perimeter of the trap. Although the molecule is actually tumbling around slightly in the solution in response to the many little kicks it receives, it tumbles in such a confined area that for practical purposes, it is being held in suspension and is stable enough for extended viewing by the researchers. In the case of the protein in this study, Goldsmith said they were often able to hold onto a molecule and view it for more than an entire second.

"That may not sound like very much, but if you don't have the trap and you don't want to staple your molecule to a surface, you are basically limited to 10 or 20 milliseconds," he said.

All the current single-molecule techniques – whether the older, more confining ones or Moerner and Goldsmith's comparatively free-range method – involve fluorescence microscopy, which employs a laser to excite the molecule of interest into emitting photons.

Not all parts of a protein fluoresce, only certain subgroups within the structure, but the brightness levels of the fluorescence tell the researchers something about how the fluorescent subgroups are interacting with each other.

Goldsmith said one of the previous studies had observed three brightness levels, whereas he saw four or more distinct levels in their experiments. "That doesn't sound like it makes a big difference, but for these particular molecules it speaks to a fundamentally different type of behavior," he said.

"We saw that these proteins were undergoing dynamics that would have been more or less impossible to see, had you had them confined," Goldsmith said. "What we think is happening is that the protein that encompasses these fluorescent groups is actually changing shape."

Currently there are only two ABEL traps in the world besides the one in Moerner's lab. "It is a complex scientific instrument. It is not something trivial to build," Goldsmith said. "But whenever we take this story on the road and talk to other researchers about what the ABEL trap can do, we always see everyone's eyes get really wide, when they see the sort of unperturbed behavior you can get."

"It is not perfect," Goldsmith said. "But we have moved a lot closer to the ideal." "And the ABEL trap is being used for other exciting experiments on single molecules," Moerner said.

This work was supported in part by the U.S. Department of Energy and the National Center for Research Resources of the National Institutes of Health.

Source: Stanford University

Join the Discussion
Rate Article: Average 5 out of 5
register or log in to comment on this article!

0 Comments

Add Comment

Text Only 2000 character limit

Page 1 of 1

Research Exchange

Publishing Data That Conform to the MIQE Guidelines

Jan 22

Minimum information for publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines help researchers design qPCR experiments.

Calibration Free Analysis to Measure the Concentration of Active Proteins

Nov 23 2009

An SPR-based method, Calibration Free Concentration Analysis can be used to accurately determine the concentration of active protein in a sample, relating to the specific binding activity of the protein, and without the need for a standard.

Advances in EMCCD Technology: Making Imaging Less Arbitrary

Nov 16 2009

Recent advances in EMCCD technology have solved the problem of non-standardized measurement units by using the photoelectron to standardize imaging experiments.

10 Tips for Successful Sample Concentration and Buffer Exchange

Nov 6 2009

Centrifugal devices with ultrafiltration (UF) membrane can solve common problems researchers face when working with proteins.

Advantages of Monolithic Laser Combiner Technology in Confocal Microscopy Systems

Jan 6

Fluorescence microscopy techniques require a reliable light source at the desired wavelength or wavelengths, with minimal downtime for maintenance and alignment. Lasers are a popular light source, although the alignment and upkeep of laser combiners is a time-consuming prospect for many users.

Size-Exclusion Chromatography for Purification of Biomolecules

Dec 2 2009

Size-exclusion chromatography (SEC) is a popular method to separate biomolecules based on their size. Primarily, it is applied to the separation of biopolymers such as proteins and nucleic acids, i.e. water-soluble polymers.

Improving Separation During Electrophoresis

Dec 2 2009

SeparateIT gels represent a novel gel matrix for DNA electrophoresis. Gel polymers are arranged in a conceptually different way, in accordance with a new theoretical model of gel electrophoresis.

Improving Quality of ELISA

Dec 2 2009

Using ready-to-use ELISA kits from manufacturers is easy and convenient. Sometimes however, home-made ELISA is required because there is no kit available with the right antibodies or the characteristics of the available kits such as their limits of detection are not appropriate.

Using the Tecan Genesis Workstation to Automate a Cytometric Bead Array (CBA) Immunoassay

Mar 11

The poster describe the process involved in automating a Cytometric Bead Array (CBA) immunoassay developed to measure relative concentrations of serum antibodies against Tetanus (TT), Sperm Whale Myoglobin (SWM) and Keyhole Limpet Hemocyanin (KLH) in KLH-immunized volunteers.

Ensuring Quality in Assays Performed with Automated Liquid Handlers

Feb 2

The focus of this presentation is to highlight the need of ensuring quality in important assays performed with automated liquid handlers. Nearly all assays performed within a laboratory are volume-dependent. In turn, all concentrations of biological and chemical components in these assays, as well as the associated dilution protocols, are volume-dependent. Because analyte concentration is volume-dependent, an assay’s results might be falsely interpreted if liquid handler variability and inaccuracies are unknown or if the system(s) go unchecked for a long period.

Inkjet System for Protein Crystallography

Feb 1

X-ray crystallography is used routinely by scientists to obtain the three dimensional structure of a biological molecule of interest.Such information can be used to determine how a pharmaceutical interacts with a protein target and what changes might improve functionality. However, the crystallization of macromolecules still remains a serious hindrance in structural determination despite impressive advances in screening methods and technologies.

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Nov 9 2009

Action selection is modulated by external stimuli either directly or via memory retrieval. In a constantly changing environment, animals have evolved attention-like processes to effectively filter the incoming sensory stream. These attention-like processes, in turn, are modulated by memory. The neurobiological nature of how attention, action selection and memory are inter-connected is unknown. We describe here new phenotypes of the memory mutant radish in the fruit fly Drosophila.

Relationship between multiple sources of perceived social support and psychological and academic adjustment in early adolescence: comparisons across gender.

Mar 8

The current study investigated gender differences in the relationship between sources of perceived support (parent, teacher, classmate, friend, school) and psychological and academic adjustment in a sample of 636 (49% male) middle school students. Longitudinal data were...

Involvement of ceramide in ischemic tolerance induced by preconditioning with sublethal oxygen-glucose deprivation in primary cultured cortical neurons of rats.

Feb 25

The complex molecular cascades of ischemic tolerance in brain cells remain unclear. Recently, sphingolipid-related metabolite ceramide has been implicated as a second messenger in many biological functions, including neuronal survival and death. The present study, therefore,...

Social intelligence and academic achievement as predictors of adolescent popularity.

Feb 24

This study compared the effects of social intelligence and cognitive intelligence, as measured by academic achievement, on adolescent popularity in two school contexts. A distinction was made between sociometric popularity, a measure of acceptance, and perceived popularity, a...

Prokariotic Cell Collection in Denmark

Nov 6 2009

I would like to know about a prokariotic cell collection in Denmark. Is there a cell bank in this country? I need a Lactobacillus strain for a fermentation assay and this information about the bank is very helpful for me.

Request for Entries

Oct 16 2009

Ask the Experts is your chance to get the answers to questions on applications, materials, methods, processes, and technologies. Email you question to bst_web@advantagemedia.com, and the editors of Bioscience Technology will find an appropriate expert to answer it. Watch this space in the future to see the questions your colleagues are posting.

STAY INFORMED: SUBSCRIBE TO

Magazine and E-mail Newsletters

Loading...
E-mail:   

MULTIMEDIA

Video:

Neuroscience Diseases of The Brain and How The Mind Emerges

Neuroscience Diseases of The Brain and How The Mind Emerges

Nov 8 2009

Dennis Choi, director of Emory Universitys Neuroscience Center, is renowned for his groundbreaking research on brain and spinal cord injury.

Podcasts:

Allen Institute for Brain Research

Allen Institute for Brain Research

Oct 14 2009

Discussed in this interview are both the mouse brain project and the human cortex project with an emphasis on the importance of these projects to neuroscience research.

Information: