Molecule Tells Brain Cells to Grow Up, Get to Work

Featured In: Academia News | Cancer | Neuroscience

Thursday, March 11, 2024

Loading...

About four out of every 10 cells in the brain are so-called oligodendrocytes. These cells produce the all-important myelin that coats nerve tracts, ensuring fast, energy-efficient transmission of nerve impulses. Mixed among them are proliferating but not particularly proficient precursor cells that are destined to become oligodendrocytes when needed but, for now, remain suspended in an immature, relatively undifferentiated state somewhere between stem cell and adult oligodendrocyte.

Stanford University School of Medicine scientists have now identified a molecular master switch that catalyzes these cells’ transition to mature, myelin-making mavens. The results may have implications for medical treatment, as defects in this maturation process have been observed in both multiple sclerosis and the most common kind of brain cancers in adults, known as gliomas.

In a study published March 10 in Neuron, the investigators found that a molecule known as miR-219 is found at high levels only in oligodendrocytes, and that it is both necessary and sufficient to induce their relatively undifferentiated precursors to become functioning adult cells.

“The mechanism responsible for this shifting of anatomical and behavioral gears from precursor to fully functioning oligodendrocyte was a mystery,” said Ben Barres, MD, PhD, professor and chair of neurobiology and the study’s senior author. “Finding this switch has allowed us to ferret out several of the molecules it acts on inside cells. And that in turn could open the door to new approaches to treating diseases where oligodendrocyte precursors’ failure to mature appropriately plays a role.”

A more general question that has puzzled biologists is how cells in one state switch seamlessly to another state. Such a shift implies switching on and off entire banks of genes whose protein products determine a cell’s shape, activity and contribution — beneficial or otherwise — to our overall health. The study’s results may help to piece that puzzle together.

The specific molecule, miR-219, shown to play a key role in initiating oligodendrocytes’ precursor-to-adult transition belongs to a class of molecules known as microRNAs.

RNA molecules are normally thought of as messengers that convey instructions from DNA in the nucleus of animal and plant cells to the surrounding watery zone inside the cell. There, molecular machines that can “read” the messenger RNA’s nucleic-acid sequences assemble proteins according to its dictates.

Unlike messenger RNA, microRNA molecules are very short strings of RNA that don’t contain instructions for making proteins. While a messenger RNA molecule has to be fairly lengthy to hold all the information necessary for generating a complete protein, a microRNA molecule plays a different role entirely, as Andrew Fire, PhD, Stanford professor of pathology and of genetics and winner of the 2006 Nobel Prize in medicine, discovered.

In the same way that two DNA strands are famously able to form a coordinated double strand when the shapes of the two strands’ constituent nucleic-acid sequences are complementary, a microRNA molecule can bind to messenger RNAs when those messenger RNAs’ sequences complement its own. The result is that the messenger RNA’s sequence can no longer be read by the cell’s protein-manufacturing apparatus, gumming up assembly of the protein it encodes. The binding of microRNA to messenger RNA can even trigger the destruction of the bound complex, setting back the protein-production schedule all the more.

Interestingly, not every bit of a microRNA molecule’s sequence has to match its opposite number on a messenger RNA molecule in order for the two to bind. Instead, pairing relies on the recognition of an ultra-short “seed” sequence within the microRNA molecule. “So a single microRNA can affect the activity levels of hundreds of different messenger RNAs,” said the study’ first author, Jason Dugas, PhD, a research associate in Barres’ laboratory.

The study included a collaboration with the lab of Michael McManus, PhD, at the Diabetes Center of the University of California-San Francisco. McManus had generated a customized technique that could measure the relative abundance of different microRNA species in a cell extract.

Meanwhile, the Barres lab is acknowledged worldwide for its prowess in the study of certain types of brain cells. It was Barres who in the 1990s — as a postdoctoral researcher in the Harvard lab of Martin Raff, MDCM, who discovered oligodendrocyte precursor cells — figured out how to refine these precursors to complete purity, keep them alive in a defined culture medium and get them to differentiate into mature oligodendrocytes.

In this latest series of experiments, Dugas, Barres and their colleagues showed that impairing all microRNA production in cells fated to become oligodendrocytes produced both behavioral defects in live laboratory mice and clear anatomical defects (lack of proper myelination) in brain slices from these mice. Precursor cells cultured in a dish failed to undergo the conversion to adulthood normally triggered by withdrawal of a growth factor, which stimulates precursor cells’ proliferation, from the culture medium.

Then, the scientists induced the oligodendrocyte precursor-to-adult transition in normal cells and, using the McManus lab’s technology, checked for microRNAs whose levels changed greatly. The amount of one particular microRNA, miR-219, increased by 100-fold at this juncture, Dugas said. That finding has been confirmed in another laboratory that will also publish soon on this subject, Dugas and Barres said.

Staining of brain sections revealed that miR-219 is largely restricted to the brain’s white matter — that is, its myelinated regions — making it an excellent biomarker for oligodendrocytes. The researchers also found that delivering a synthetic analog of miR-219 to oligodendrocyte precursor cells deficient in all microRNA generation — and therefore incapable of maturing to myelin-producing oligodendrocytes — partially rescued those cells’ ability to mature. Moreover, knocking out only miR-219 function in the oligodendrocyte-fated precursor cells once again prevented them from maturing normally. Adding miR-219 to normal oligodendrocyte precursors in culture, without inducing their differentiation by standard growth-factor withdrawal, increased up to fourfold their likelihood of converting to adulthood.

Finally, the investigators were able to identify several distinct messenger RNAs that were inhibited by miR-219. These messenger RNAs encode proteins that both maintain precursors’ proliferative potential and prevent them from becoming full-fledged oligodendrocytes.

“In addition to potential importance for stimulating remyelination in multiple sclerosis, we’re especially excited about our findings’ potential significance for glioma, the most common adult brain tumor,” Barres said. “There hasn’t been any really good treatment for these tumors, in which precursor cells start dividing and dividing and don’t differentiate. Why are these cells behaving so abnormally? Maybe this microRNA switch has been downregulated or shut down entirely. Perhaps by introducing miR-219 back into glioma cells, we may actually be able to stop them from behaving like tumor cells.” Barres said his lab has entered into a collaboration with another group to test this idea.

Source: Stanford University School of Medicine

Join the Discussion
Rate Article: Average 5 out of 5
register or log in to comment on this article!

0 Comments

Add Comment

Text Only 2000 character limit

Page 1 of 1

Research Exchange

Simultaneous Measurement of Multiple Signaling Pathways in Human Leukemias Using Flow Cytometry

May 24

Next generation assays will need to be robust and standardized in order to make the transition from a research procedure to a routine clinical assay. Flow cytometry provides a unique and sensitive method to accomplish these requirements.

Automated Forensic DNA Methods: Relieving the Pain of Validation

Apr 21

Automation can increase a forensics lab's sample processing capacity, but it can also add to the complexity of system verification and validation.

Successful Sample Identification

Apr 1

2D Barcodes ensure that a multitude of samples can be tracked in a variety of storage conditions.

Multi-Parametric Cellular Analysis

Mar 23

Flow cytometers perform a variety of multi parametric applications and have been used for an expanding set of cell analysis applications over the past forty years.

Step up to the MIQE

Mar 30

Over the years, polymerase chain reaction (PCR) has evolved into a readily automated, high throughput quantitative technology. Real-time quantitative PCR (qPCR) has become the industry standard for the detection and quantification of nucleic acids for multiple application, including quantification of RNA levels. But a lack of consensus among researchers on how to best perform and interpret qPCR experiments presents a major hurdle for advancement of the technology. This problem is exacerbated by insufficient experimental detail in published work, which impedes the ability of others to accurately evaluate or replicate reported results.

Fast Optimization of a Multiplex Influenza Identification Panel Using a Thermal Gradient

Mar 30

The year 2009 was marked by the emergence of a novel influenza A (H1N1) virus that infects humans. There is a need to identify the different strains of influenza virus for purposes of monitoring the H1N1 strain pandemic and for other epidemiological and scientific purposes.

Advantages of Monolithic Laser Combiner Technology in Confocal Microscopy Systems

Jan 6

Fluorescence microscopy techniques require a reliable light source at the desired wavelength or wavelengths, with minimal downtime for maintenance and alignment. Lasers are a popular light source, although the alignment and upkeep of laser combiners is a time-consuming prospect for many users.

Size-Exclusion Chromatography for Purification of Biomolecules

Dec 2 2009

Size-exclusion chromatography (SEC) is a popular method to separate biomolecules based on their size. Primarily, it is applied to the separation of biopolymers such as proteins and nucleic acids, i.e. water-soluble polymers.

Using the Tecan Genesis Workstation to Automate a Cytometric Bead Array (CBA) Immunoassay

Mar 11

The poster describe the process involved in automating a Cytometric Bead Array (CBA) immunoassay developed to measure relative concentrations of serum antibodies against Tetanus (TT), Sperm Whale Myoglobin (SWM) and Keyhole Limpet Hemocyanin (KLH) in KLH-immunized volunteers.

Ensuring Quality in Assays Performed with Automated Liquid Handlers

Feb 2

The focus of this presentation is to highlight the need of ensuring quality in important assays performed with automated liquid handlers. Nearly all assays performed within a laboratory are volume-dependent. In turn, all concentrations of biological and chemical components in these assays, as well as the associated dilution protocols, are volume-dependent. Because analyte concentration is volume-dependent, an assay’s results might be falsely interpreted if liquid handler variability and inaccuracies are unknown or if the system(s) go unchecked for a long period.

Inkjet System for Protein Crystallography

Feb 1

X-ray crystallography is used routinely by scientists to obtain the three dimensional structure of a biological molecule of interest.Such information can be used to determine how a pharmaceutical interacts with a protein target and what changes might improve functionality. However, the crystallization of macromolecules still remains a serious hindrance in structural determination despite impressive advances in screening methods and technologies.

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Nov 9 2009

Action selection is modulated by external stimuli either directly or via memory retrieval. In a constantly changing environment, animals have evolved attention-like processes to effectively filter the incoming sensory stream. These attention-like processes, in turn, are modulated by memory. The neurobiological nature of how attention, action selection and memory are inter-connected is unknown. We describe here new phenotypes of the memory mutant radish in the fruit fly Drosophila.

Prokariotic Cell Collection in Denmark

Nov 6 2009

I would like to know about a prokariotic cell collection in Denmark. Is there a cell bank in this country? I need a Lactobacillus strain for a fermentation assay and this information about the bank is very helpful for me.

Request for Entries

Oct 16 2009

Ask the Experts is your chance to get the answers to questions on applications, materials, methods, processes, and technologies. Email you question to bst_web@advantagemedia.com, and the editors of Bioscience Technology will find an appropriate expert to answer it. Watch this space in the future to see the questions your colleagues are posting.

STAY INFORMED: SUBSCRIBE TO

Magazine and E-mail Newsletters

Loading...
E-mail:   

MULTIMEDIA

Video:

Neuroscience Diseases of The Brain and How The Mind Emerges

Neuroscience Diseases of The Brain and How The Mind Emerges

Nov 8 2009

Dennis Choi, director of Emory Universitys Neuroscience Center, is renowned for his groundbreaking research on brain and spinal cord injury.

Podcasts:

Allen Institute for Brain Research

Allen Institute for Brain Research

Oct 14 2009

Discussed in this interview are both the mouse brain project and the human cortex project with an emphasis on the importance of these projects to neuroscience research.

Information: