Loading...

Daily news and top headlines for life science research professionals

FREE Email Newsletter View Sample


Global Genome Effort Seeks Genetic Roots of Disease

Featured In: Editor's Picks | Academia News | Genomics

Wednesday, October 31, 2024

See today's top life science stories and headlines - Sign up now!

newsvine diigo google
slashdot
Share
Loading...

By decoding the genomes of more than 1,000 people whose homelands stretch from Africa and Asia to Europe and the Americas, scientists have compiled the largest and most detailed catalog yet of human genetic variation. The massive resource will help medical researchers find the genetic roots of rare and common diseases in populations worldwide.

The 1000 Genomes Project involved some 200 scientists at Washington University School of Medicine in St. Louis and other institutions. Results detailing the DNA variations of individuals from 14 ethnic groups are published Oct. 31 in the journal Nature. Eventually, the initiative will involve 2,500 individuals from 26 populations.

“With this resource, researchers have a roadmap to search for the genetic origins of diseases in populations around the globe,” says one of the study's co-principal investigators, Elaine Mardis, PhD, co-director of The Genome Institute at Washington University. “We estimate that each person carries up to several hundred rare DNA variants that could potentially contribute to disease. Now, scientists can investigate how detrimental particular rare variants are in different ethnic groups.”

At the genetic level, any two people are more than 99 percent alike. But rare variants – those that occur with a frequency of 1 percent or less in a population – are thought to contribute to rare diseases as well as common conditions like cancer, heart disease and diabetes. Rare variants may also explain why some medications are not effective in certain people or cause side effects such as nausea, vomiting, insomnia and sometimes even heart problems or death.

Identifying rare variants across different populations is a major goal of the project. During the pilot phase of the effort, the researchers found that most rare variants differed from one population to another, and that they developed recently in human evolutionary history, after populations in Europe, Africa, Asia and the Americas diverged from a single group. The current study bears this out.

“This information is crucial and will improve our interpretation of individual genomes,” says another of the study's co-principal investigators, Richard K. Wilson, PhD, director of The Genome Institute and a pioneer in cancer genome sequencing. “Now, if we want to study cancer in Mexican Americans or Japanese Americans, for example, we can do so in the context of their diverse geographic or ancestry-based genetic backgrounds.”

Results of the new study are based on DNA sequencing of the following populations: Yoruba in Nigeria; Han Chinese in Beijing; Japanese in Tokyo; Utah residents with ancestry from northern and western Europe; Luhya in Kenya; people of African ancestry in the southwestern United States; Toscani in Italy; people of Mexican ancestry in Los Angeles; Southern Han Chinese in China; Iberian from Spain; British in England and Scotland; Finnish from Finland; Colombians in Columbia; and Puerto Rican in Puerto Rico.

All study participants submitted anonymous DNA samples and agreed to have their genetic data included in an online database. To catalog the variants, the researchers first sequenced the entire genome – all the DNA – of each individual in the study about five times. Surveying the genome in this way finds common DNA changes but misses many rare variants.

Then, to find rare variants, they repeatedly sequenced the small portion of the genome that contains genes – about 80 times for each participant to ensure accuracy – and they looked closely for single letter changes in the DNA sequence called SNPs (for single-nucleotide polymorphisms).

Using special tools developed to analyze and integrate the data, the researchers discovered a total of 38 million SNPs, including more than 99 percent of the variants with at frequency of at least one percent in the participants’ DNA samples. They also found numerous structural variations, including 1.4 million short stretches of insertions or deletions and 14,000 large DNA deletions.

SNPs and structural variants can help explain an individual’s susceptibility to disease, response to drugs or reaction to environmental factors such as air pollution or stress. Other studies have found an association between small insertions and deletions and diseases such as autism and schizophrenia.

The 1000 Genomes Project has generated massive amounts of genomic data. Simply recording the raw information took up some 180 terabytes of hard-drive space, enough to fill more than 40,000 DVDs. All of the information is freely available on the Internet through public databases.

“This tremendous resource builds on the knowledge of the Human Genome Project,” says co-author George Weinstock, PhD, associate director of The Genome Institute. “Scientists and, ultimately, patients worldwide will benefit from the extensive effort to understand the shared features and geographic diversity of the human genome.”

Source: Washington University in St. Louis

Join the Discussion
Rate Article: Average 0 out of 5
register or log in to comment on this article!

0 Comments

Add Comment

Text Only 2000 character limit

Page 1 of 1

Research Exchange

Live Cell Analysis of Autophagy

Sep 4

Analysis of autophagosome formation using fluorescent cellular imaging and lentiviral biosensors.

Deconstructing 3D Cell Culture

Aug 31

3D culture models offer the potential to significantly reduce drug failure.

Safety Without Sacrifice

Safety Without Sacrifice

Jun 26

Liquid handling ergonomics and performance considerations

ELNs: The Beating Heart of a Scientist’s World

ELNs: The Beating Heart of a Scientist’s World

May 22

As ELNs deliver more benefits to researchers, the cost of changing working practice is outweighed by access to high quality, high context collaboration.

Evaluation of a New Nano-Type UV-Vis Spectrophotometer

Mar 3 2011

Analysis of one- to four-microliter size samples for nucleic acids has become routine in many life science laboratories. However, until now, available instruments require considerable manipulation of the instrument and sample; some require manually recording the data. The user must typically lower and raise the arm manually, then wipe the sample manually from the target after each analysis. And fiberoptics used in some of these instruments are subject to deterioration.

Production of Recombinant Proteins and Monoclonal Antibodies in Hollow Fiber Bioreactors

Jan 25 2011

While well-understood, robust and convenient, classical batch-style 2-D culture on non-porous supports or 3-D suspension culture in other devices are really not very biologically relevant models. Cell culture conditions can affect the quality of the antibody or protein produced.

Selecting Robots for Use in Drug Discovery and Testing

Dec 6 2010

Drug discovery and testing, with their need for speed, repeatability and verification, are ideally suited to benefit from robot automation. It is therefore not surprising that robots have been at the forefront of automation developments in both these areas.

HP Scalable Network Storage Systems for Life Sciences

Sep 13 2010

Life sciences research today is advancing exponentially, each step bringing us closer to the realization of truly personalized medicine–preventive care and treatments designed specifically for each individual. In the near future, PCPGM healthcare researchers expect to be able to use predictive genetic testing to create custom treatment plans for individuals and deliver dramatic improvements over today’s one-size-fits-all approach. But research capabilities are only part of the equation; current storage and operating capacities must also evolve to accommodate ever-expanding amounts of data before the goal of personalized medicine can be realized.

Using the Tecan Genesis Workstation to Automate a Cytometric Bead Array (CBA) Immunoassay

Mar 11 2010

The poster describe the process involved in automating a Cytometric Bead Array (CBA) immunoassay developed to measure relative concentrations of serum antibodies against Tetanus (TT), Sperm Whale Myoglobin (SWM) and Keyhole Limpet Hemocyanin (KLH) in KLH-immunized volunteers.

Ensuring Quality in Assays Performed with Automated Liquid Handlers

Feb 2 2010

The focus of this presentation is to highlight the need of ensuring quality in important assays performed with automated liquid handlers. Nearly all assays performed within a laboratory are volume-dependent. In turn, all concentrations of biological and chemical components in these assays, as well as the associated dilution protocols, are volume-dependent. Because analyte concentration is volume-dependent, an assay’s results might be falsely interpreted if liquid handler variability and inaccuracies are unknown or if the system(s) go unchecked for a long period.

Inkjet System for Protein Crystallography

Feb 1 2010

X-ray crystallography is used routinely by scientists to obtain the three dimensional structure of a biological molecule of interest.Such information can be used to determine how a pharmaceutical interacts with a protein target and what changes might improve functionality. However, the crystallization of macromolecules still remains a serious hindrance in structural determination despite impressive advances in screening methods and technologies.

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Nov 9 2009

Action selection is modulated by external stimuli either directly or via memory retrieval. In a constantly changing environment, animals have evolved attention-like processes to effectively filter the incoming sensory stream. These attention-like processes, in turn, are modulated by memory. The neurobiological nature of how attention, action selection and memory are inter-connected is unknown. We describe here new phenotypes of the memory mutant radish in the fruit fly Drosophila.

Red Meat Consumption and Mortality: Results From 2 Prospective Cohort Studies

Mar 16

BACKGROUND: Red meat consumption has been associated with an increased risk of chronic diseases. However, its relationship with mortality remains uncertain. METHODS: We prospectively observed 37 698 men from the Health Professionals Follow-up Study (1986-2008)...

Structural analysis of eyespots: dynamics of morphogenic signals that govern elemental positions in butterfly wings.

Mar 15

ABSTRACT: BACKGROUND: To explain eyespot colour-pattern determination in butterfly wings, the induction model has been discussed based on colour-pattern analyses of various butterfly eyespots. However, a detailed structural analysis of eyespots that can serve as...

Prokariotic Cell Collection in Denmark

Nov 6 2009

I would like to know about a prokariotic cell collection in Denmark. Is there a cell bank in this country? I need a Lactobacillus strain for a fermentation assay and this information about the bank is very helpful for me.

Request for Entries

Oct 16 2009

Ask the Experts is your chance to get the answers to questions on applications, materials, methods, processes, and technologies. Email you question to bst_web@advantagemedia.com, and the editors of Bioscience Technology will find an appropriate expert to answer it. Watch this space in the future to see the questions your colleagues are posting.

STAY INFORMED: SUBSCRIBE TO

Magazine and E-mail Newsletters

Loading...
Loading...

Free Life Science Industry
Subscriptions

Magazine

wireless week

Newsletters

newsletters

Sign up now



MULTIMEDIA

Video:

Epigenetics

Aug 30

Hank & his clone Circus Hank explain the power of epigenetics, which studies the factors that determine how much or whether some genes are expressed in your body.

Podcasts:

Futures In Biotech 93: Snyder's Omics

May 17

Host: Marc Pelletier Co-Host: Andre Nantel, Ph.D. The technologies that our guest has developed are playing an important role in changing the world, not like the car, the microwave and the cell phone, but as in Drs. Flox, McCoy, and Crusher. Guest: Dr. Michael Snyder We invite...

Top Stories and Headlines
EVERY DAY!

FREE Email Newsletter

Information: