Protection against one of Africa’s oldest animal plagues

Featured In: International News

By University of Manchester Monday, May 16, 2024

Get daily Bioscience Technology industry top stories and headlines - Sign up now!

newsvine diigo google
slashdot
Share
Loading...

17 May 2024

An international research team, including University of Manchester scientists, using a new combination of approaches has found two genes that may prove of vital importance to the lives and livelihoods of millions of farmers in a tsetse fly-plagued swathe of Africa.

The team’s results, published in the Proceedings of the National Academy of Sciences (PNAS), is aimed at finding the biological keys to protection from a single-celled trypanosome parasite that causes both African sleeping sickness in people and a wasting disease in cattle.

The disease, which affects people and animals in a vast swathe of Africa the size of the USA, brought together a range of high-tech tools and field observations to address a critical affliction of some of the world’s poorest people.

Sleeping sickness affects an estimated 300,000 Africans each year, eventually killing more than half of them.

Although best known for causing human sleeping sickness, the trypanosome parasite’s most devastating blow to human welfare comes in an animal form, with sick, unproductive cattle costing farmers and herders huge losses and opportunities.

The annual economic impact of ‘Nagana’, a common name in Africa for the form of the disease that affects cattle (officially known as African animal trypanosomiasis), has been estimated at US$4-5 billion.

In a vast tsetse belt across Africa, stretching from Senegal on the west coast to Tanzania on the east coast, and from Chad in the north to Zimbabwe in the south, the disease each year renders millions of cattle too weak to plow land or to haul loads, and too sickly to give milk or to breed, before finally killing off most of those infected.

This means that in much of Africa, where tractors and commercial fertilizers are scarce and prohibitively expensive, cattle are largely unavailable for tilling and fertilizing croplands or for producing milk and meat for families.

The tsetse fly and the disease it transmits are thus responsible for millions of farmers having to till their croplands by hand rather than by animal-drawn plow.

This genetics of disease resistance research was led by scientists from the International Livestock Research Institute in Nairobi, Kenya, and from the UK Universities of Liverpool, Manchester and Edinburgh, and involved researchers from other institutions in Britain, Ireland and South Korea.

The researchers drew on the fact that while the humped cattle breeds characteristic of much of Africa are susceptible to disease-causing trypanosome parasites, a humpless West African breed, called the N’Dama, is not seriously affected by the disease.

Having been domesticated in Africa some 8,000 or more years ago, this most ancient of African breeds has had time to evolve resistance to the parasites. This makes the N’Dama a valued animal in Africa’s endemic regions.

African agriculturalists of all kinds would like to see the N’Dama’s inherent disease resistance transferred to other, more productive breeds, but this is difficult without precise knowledge of the genes responsible for disease resistance in the N’Dama.

Finding these genes has been the “Holy Grail” of a group of international livestock geneticists for more than two decades, but the genetic and other biological pathways that control bovine disease resistance are complex and have proven difficult to determine.

The PNAS paper is thus a landmark piece of research in this field. The international and inter-institutional team that made this breakthrough did so by combining a range of genetic approaches, which until now have largely been used separately.

They used these genetic approaches to distinguish differences between the ”trypano-tolerant” (humpless) N’Dama, which come from West Africa, and “trypano-susceptible” (humped) Boran cattle, which come from Kenya, in East Africa.

The scientists first identified the broad regions of their genomes controlling their different responses to infection with trypanosome parasites, but this was insufficient to identify the specific genes controlling resistance to the disease.

So the scientists began adding layers of information obtained from other approaches. They sequenced genes from these regions to look for differences in those sequences between the two breeds.

The team at Edinburgh conducted gene expression analyses to investigate any differences in genetic activity in the tissues of the two cattle breeds after sets of animals of both breeds were experimentally infected with the parasites.

Then, the ILRI group tested selected genes in the lab. Finally, they looked at the genetics of cattle populations from all over Africa.

Analysing the vast datasets created in this research presented significant computational challenges.

Professor Andy Brass and his team in the School of Computer Science at The University of Manchester managed to capture, integrate and analyse the highly complex set of biological data by using workflow software called “Taverna” which was developed as part of a UK e-Science initiative by  Manchester computer scientist Professor Carole Goble and her “myGrid” team.

Professor Brass said: "The Taverna workflows we developed are capable of analysing huge amounts of biological data quickly and accurately.

“Taverna’s infrastructure enabled us to develop the systematic analysis pipelines we required and to rapidly evolve the analysis as new data came into the project. We’re sharing these workflows so they can be re-used by other researchers looking at different disease models

"This breakthrough demonstrates the real-life benefits of computer science and how a problem costing many lives can be tackled using pioneering e-Science systems.”

With this new knowledge of the genes controlling resistance to trypanosomiasis in the N’Dama, breeders could screen African cattle to identify animals with relatively high levels of disease resistance and furthermore incorporate the genetic markers for disease resistance with markers for other important traits, such as high productivity and drought tolerance, for improved breeding programs generally.

If further research confirms the significance of these genes in disease resistance, a conventional breeding program could develop a small breeding herd of disease-resistant cattle in 10-15 years, which could then be used over the next several decades to populate Africa’s different regions with animals most suited to those regions.

Using genetic engineering techniques to achieve the same disease-resistant breeding herd, an approach still in its early days, could perhaps be done in four or five years,

Notes for editors

The International Livestock Research Institute (www.ilri.org) works with partners worldwide to help poor people keep their farm animals alive and productive, increase and sustain their livestock and farm productivity, and find profitable markets for their animal products.

Professor Brass and Professor Goble are available for interview on request.

For media enquiries please contact:

Daniel Cochlin
Media Relations Officer
The University of Manchester
0161 275 8387
daniel.cochlin@manchester.ac.uk
 

SOURCE

Join the Discussion
Rate Article: Average 0 out of 5
register or log in to comment on this article!

0 Comments

Add Comment

Text Only 2000 character limit

Page 1 of 1

Research Exchange

Bringing the Cell Image into Focus

Nov 2 2010

Improvements in transmission electron microscope (TEM) technology increase the power of this imaging tool for the study of cell biology.

Finding a Cure for Spinal Cord Injury with On-Demand LIMS

Oct 25 2010

The Miami Project to Cure Paralysis finds an on-demand laboratory information management system (LIMS) helps to accelerate discovery in its HCS projects.

Saving Cells: Image Processing for Improved Viability, Part II: Iterative Deconvolution

Oct 25 2010

3D light microscopy and deconvolution provide a means to investigate 3D structure, providing near-confocal quality images without the temporal requirements or potentially damaging phototoxicity associated with other 3D imaging technologies. This article is Part II in a series regarding viability, resolution improvement, and measurement in fluorescence imaging. Part I focused on spectral unmixing.

Saving Cells: Image Processing for Improved Viability

Sep 22 2010

This article is Part I of a two-part series regarding viability, resolution improvement, and measurement in fluorescence imaging. Part II will focus on deconvolution.

Evaluation of a New Nano-Type UV-Vis Spectrophotometer

Mar 3

Analysis of one- to four-microliter size samples for nucleic acids has become routine in many life science laboratories. However, until now, available instruments require considerable manipulation of the instrument and sample; some require manually recording the data. The user must typically lower and raise the arm manually, then wipe the sample manually from the target after each analysis. And fiberoptics used in some of these instruments are subject to deterioration.

Production of Recombinant Proteins and Monoclonal Antibodies in Hollow Fiber Bioreactors

Jan 25

While well-understood, robust and convenient, classical batch-style 2-D culture on non-porous supports or 3-D suspension culture in other devices are really not very biologically relevant models. Cell culture conditions can affect the quality of the antibody or protein produced.

Selecting Robots for Use in Drug Discovery and Testing

Dec 6 2010

Drug discovery and testing, with their need for speed, repeatability and verification, are ideally suited to benefit from robot automation. It is therefore not surprising that robots have been at the forefront of automation developments in both these areas.

HP Scalable Network Storage Systems for Life Sciences

Sep 13 2010

Life sciences research today is advancing exponentially, each step bringing us closer to the realization of truly personalized medicine–preventive care and treatments designed specifically for each individual. In the near future, PCPGM healthcare researchers expect to be able to use predictive genetic testing to create custom treatment plans for individuals and deliver dramatic improvements over today’s one-size-fits-all approach. But research capabilities are only part of the equation; current storage and operating capacities must also evolve to accommodate ever-expanding amounts of data before the goal of personalized medicine can be realized.

Using the Tecan Genesis Workstation to Automate a Cytometric Bead Array (CBA) Immunoassay

Mar 11 2010

The poster describe the process involved in automating a Cytometric Bead Array (CBA) immunoassay developed to measure relative concentrations of serum antibodies against Tetanus (TT), Sperm Whale Myoglobin (SWM) and Keyhole Limpet Hemocyanin (KLH) in KLH-immunized volunteers.

Ensuring Quality in Assays Performed with Automated Liquid Handlers

Feb 2 2010

The focus of this presentation is to highlight the need of ensuring quality in important assays performed with automated liquid handlers. Nearly all assays performed within a laboratory are volume-dependent. In turn, all concentrations of biological and chemical components in these assays, as well as the associated dilution protocols, are volume-dependent. Because analyte concentration is volume-dependent, an assay’s results might be falsely interpreted if liquid handler variability and inaccuracies are unknown or if the system(s) go unchecked for a long period.

Inkjet System for Protein Crystallography

Feb 1 2010

X-ray crystallography is used routinely by scientists to obtain the three dimensional structure of a biological molecule of interest.Such information can be used to determine how a pharmaceutical interacts with a protein target and what changes might improve functionality. However, the crystallization of macromolecules still remains a serious hindrance in structural determination despite impressive advances in screening methods and technologies.

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Nov 9 2009

Action selection is modulated by external stimuli either directly or via memory retrieval. In a constantly changing environment, animals have evolved attention-like processes to effectively filter the incoming sensory stream. These attention-like processes, in turn, are modulated by memory. The neurobiological nature of how attention, action selection and memory are inter-connected is unknown. We describe here new phenotypes of the memory mutant radish in the fruit fly Drosophila.

Introduction to placebo effects in medicine: mechanisms and clinical implications.

2 hours ago

The field of placebo research has made considerable progress in the last years and it has become a major focus of interest. We know now that the placebo effect is a real neurobiological phenomenon and that the brain's 'inner pharmacy' is a critical determinant...

Seed and grow: a two-step model for nuclear body biogenesis.

3 hours ago

Nuclear bodies are dynamic structures that form at sites of specific activities associated with gene expression and genome maintenance. A paper in this issue (White et al. 2011. J. Cell Biol. doi: 10.1083/jcb.201012077) highlights key features of nuclear body...

Richard G.W. Anderson (1940-2011) and the birth of receptor-mediated endocytosis.

3 hours ago

On March 19, 2011, the discipline of cell biology lost a creative force with the passing of Richard G.W. Anderson, Professor and Chairman of the Department of Cell Biology at the University of Texas Southwestern Medical School. An unabashed chauvinist for cell...

Prokariotic Cell Collection in Denmark

Nov 6 2009

I would like to know about a prokariotic cell collection in Denmark. Is there a cell bank in this country? I need a Lactobacillus strain for a fermentation assay and this information about the bank is very helpful for me.

Request for Entries

Oct 16 2009

Ask the Experts is your chance to get the answers to questions on applications, materials, methods, processes, and technologies. Email you question to bst_web@advantagemedia.com, and the editors of Bioscience Technology will find an appropriate expert to answer it. Watch this space in the future to see the questions your colleagues are posting.

STAY INFORMED: SUBSCRIBE TO

Magazine and E-mail Newsletters

Loading...
E-mail:   

MULTIMEDIA

Video:

Viewing SureFocus Slides

Jun 11 2010

A demonstration of SureFocus Microscope Slides in the review of AFB Smears. SureFocus Slides are a patent-pending breakthrough in tuberculosis detection, as their fluorescent staining circle remains visible during review, Fluorescence Microscopy.

Podcasts:

Allen Institute for Brain Research

Allen Institute for Brain Research

Oct 14 2009

Discussed in this interview are both the mouse brain project and the human cortex project with an emphasis on the importance of these projects to neuroscience research.

Top Stories and Headlines
EVERYDAY!

FREE Email Newsletter

Information: