New bacterial signaling molecule could lead to improved vaccines

Featured In: Disease Research

By EurekAlert Thursday, May 27, 2024

Loading...

Many disease-causing microbes carry pumps that expel antibiotics, making the bugs hard to kill with standard drugs.

Ironically, these same pumps could be the bugs' Achilles heel.

University of California, Berkeley, scientists have found that the molecular pumps in Listeria bacteria, and perhaps in other pathogens, also expel small signaling molecules that stimulate a strong immune response in the cells they infect. A robust immune response, involving mobilization of killer cells and a host of other defenses, is needed to kill bad microbes before they can do damage

The surprising find that bacteria pump out a totally new and highly immunogenic molecule suggests that it may be possible to improve vaccines that use live or disabled bacteria to activate the immune system. These vaccine-grade bacteria could be engineered to ramp up production of the signaling molecule or ramp up the number of pumps, for example.

"We think this could translate directly into better vaccines," said Daniel Portnoy, UC Berkeley professor of molecular and cell biology and of public health and associate faculty director of the campus's Center for Emerging and Neglected Diseases. "We can certainly get Listeria bacteria to make more of this molecule; we already have a mutant that does that."

The researchers report their discovery, funded in part by the American Recovery and Reinvestment Act (ARRA) through the National Institute of Allergy and Infectious Diseases of the National Institutes of Health, in the May 28 issue of the journal Science.

For more than 20 years, Portnoy has been studying Listeria monocytogenes bacteria, which cause the serious foodborne illness listeriosis, to understand how they generate an unusually strong immune response in host cells. What he learns could help boost the effectiveness of a Listeria vaccine, but he also hopes to use the bacteria's powerful immunogenicity to boost the effectiveness of vaccines for other diseases and even for cancer. Several years ago, in collaboration with investigators at Aduro Biotech, he successfully inserted cancer antigens into Listeria to stimulate both an "innate" immune response and a potent "acquired" immune response, in effect delivering a one-two punch to cancer cells.

So far, Portnoy has found that the Listeria bacteria have to be alive and able to enter the cell's guts, the cytosol, in order to stimulate a strong innate immune response. Once the bacteria are detected, the cell responds with the release of Type I interferon, a molecule that actives immune cells and other defenses, and is currently used to increase the effectiveness of treatments for cancer and viral infections.

The mystery was what live Listeria secrete to stimulate the production of interferon by the host cell.

"We think this is the magic molecule we have been searching for for years," Portnoy said. "This is the molecule Listeria use to activate that so-called cytosolic surveillance pathway that leads to interferon."

He and post-doctoral chemist Joshua Woodward discovered the small molecule, cyclic-di-AMP, by studying mutant Listeria that, when infecting immune cells called macrophages, overproduce interferon. Based on previous work in Portnoy's lab, they knew that these mutants actually make an unusually large number of pumps, which are known as multidrug efflux pumps because they typically can rid bacteria of a variety of drugs.

Woodward collected fluid from cultures of mutant bacteria and, to determine its constituents using mass spectrometry, enlisted the help of Anthony Iavarone, a research scientist with the California Institute for Quantitative Biosciences (QB3) at UC Berkeley.

Of the molecules in the fluid, only one stimulated interferon production in macrophages. Woodward and Iavarone identified it as cyclic-di-AMP, a molecule discovered only two years ago in the bacteria Bacillus subitlis and thought to be involved in the production of spores. Its role in Listeria is unknown.

"We actually think that the bacteria are probably secreting it all of the time, and that the molecule only gains access to the cytosol when Listeria breaks open that vacuole and the molecule tells the host that the bacteria has also gotten in," Woodward said.

A search through the genomes of other pathogens shows that not only Listeria, but also the Staphylococci, Streptococci, Mycobacteria, Mycoplasma and Chlamydia bacteria, have the gene for cyclic-di-AMP. The gene is also found in Archaea, indicating that cyclic-di-AMP is an ancient signaling molecule.

"Most intracellular pathogens like Listeria turn on the same interferon response, but we don't know how the other ones do it yet," Portnoy said. "Maybe they all have small molecules we haven't seen. We don't know how general this discovery is."

Bacteria engineered to make altered amounts of cyclic-di-AMP may be more potent vaccines, he said.

The next step, Woodward said, is to discover how cyclic-di-AMP actually turns on interferon. For this, he and Portnoy plan to use mutant strains of Listeria in which the cyclic-di-AMP gene can be turned on and off at will.

"By studying innate immunity, we discovered an essential bacterial molecule that somehow got missed over 50 years of basic bacteriology research," Portnoy said. "We've uncovered a whole new area for our field."

SOURCE

Join the Discussion
Rate Article: Average 0 out of 5
register or log in to comment on this article!

0 Comments

Add Comment

Text Only 2000 character limit

Page 1 of 1

Research Exchange

Optical Imaging in Stem Cell Research

5 hours ago

Developing sensitive, non-invasive technologies to monitor engraftment in vivo is essential to accelerate the clinical implementation of cell therapies.

Standing Up in a Court of Law

9 hours ago

Private forensic testing laboratory ensures data integrity with advanced calibration systems.

Simultaneous Measurement of Multiple Signaling Pathways in Human Leukemias Using Flow Cytometry

May 24

Next generation assays will need to be robust and standardized in order to make the transition from a research procedure to a routine clinical assay. Flow cytometry provides a unique and sensitive method to accomplish these requirements.

Automated Forensic DNA Methods: Relieving the Pain of Validation

Apr 21

Automation can increase a forensics lab's sample processing capacity, but it can also add to the complexity of system verification and validation.

Step up to the MIQE

Mar 30

Over the years, polymerase chain reaction (PCR) has evolved into a readily automated, high throughput quantitative technology. Real-time quantitative PCR (qPCR) has become the industry standard for the detection and quantification of nucleic acids for multiple application, including quantification of RNA levels. But a lack of consensus among researchers on how to best perform and interpret qPCR experiments presents a major hurdle for advancement of the technology. This problem is exacerbated by insufficient experimental detail in published work, which impedes the ability of others to accurately evaluate or replicate reported results.

Fast Optimization of a Multiplex Influenza Identification Panel Using a Thermal Gradient

Mar 30

The year 2009 was marked by the emergence of a novel influenza A (H1N1) virus that infects humans. There is a need to identify the different strains of influenza virus for purposes of monitoring the H1N1 strain pandemic and for other epidemiological and scientific purposes.

Advantages of Monolithic Laser Combiner Technology in Confocal Microscopy Systems

Jan 6

Fluorescence microscopy techniques require a reliable light source at the desired wavelength or wavelengths, with minimal downtime for maintenance and alignment. Lasers are a popular light source, although the alignment and upkeep of laser combiners is a time-consuming prospect for many users.

Size-Exclusion Chromatography for Purification of Biomolecules

Dec 2 2009

Size-exclusion chromatography (SEC) is a popular method to separate biomolecules based on their size. Primarily, it is applied to the separation of biopolymers such as proteins and nucleic acids, i.e. water-soluble polymers.

Using the Tecan Genesis Workstation to Automate a Cytometric Bead Array (CBA) Immunoassay

Mar 11

The poster describe the process involved in automating a Cytometric Bead Array (CBA) immunoassay developed to measure relative concentrations of serum antibodies against Tetanus (TT), Sperm Whale Myoglobin (SWM) and Keyhole Limpet Hemocyanin (KLH) in KLH-immunized volunteers.

Ensuring Quality in Assays Performed with Automated Liquid Handlers

Feb 2

The focus of this presentation is to highlight the need of ensuring quality in important assays performed with automated liquid handlers. Nearly all assays performed within a laboratory are volume-dependent. In turn, all concentrations of biological and chemical components in these assays, as well as the associated dilution protocols, are volume-dependent. Because analyte concentration is volume-dependent, an assay’s results might be falsely interpreted if liquid handler variability and inaccuracies are unknown or if the system(s) go unchecked for a long period.

Inkjet System for Protein Crystallography

Feb 1

X-ray crystallography is used routinely by scientists to obtain the three dimensional structure of a biological molecule of interest.Such information can be used to determine how a pharmaceutical interacts with a protein target and what changes might improve functionality. However, the crystallization of macromolecules still remains a serious hindrance in structural determination despite impressive advances in screening methods and technologies.

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Nov 9 2009

Action selection is modulated by external stimuli either directly or via memory retrieval. In a constantly changing environment, animals have evolved attention-like processes to effectively filter the incoming sensory stream. These attention-like processes, in turn, are modulated by memory. The neurobiological nature of how attention, action selection and memory are inter-connected is unknown. We describe here new phenotypes of the memory mutant radish in the fruit fly Drosophila.

Prokariotic Cell Collection in Denmark

Nov 6 2009

I would like to know about a prokariotic cell collection in Denmark. Is there a cell bank in this country? I need a Lactobacillus strain for a fermentation assay and this information about the bank is very helpful for me.

Request for Entries

Oct 16 2009

Ask the Experts is your chance to get the answers to questions on applications, materials, methods, processes, and technologies. Email you question to bst_web@advantagemedia.com, and the editors of Bioscience Technology will find an appropriate expert to answer it. Watch this space in the future to see the questions your colleagues are posting.

STAY INFORMED: SUBSCRIBE TO

Magazine and E-mail Newsletters

Loading...
E-mail:   

MULTIMEDIA

Video:

Neuroscience Diseases of The Brain and How The Mind Emerges

Neuroscience Diseases of The Brain and How The Mind Emerges

Nov 8 2009

Dennis Choi, director of Emory Universitys Neuroscience Center, is renowned for his groundbreaking research on brain and spinal cord injury.

Podcasts:

Allen Institute for Brain Research

Allen Institute for Brain Research

Oct 14 2009

Discussed in this interview are both the mouse brain project and the human cortex project with an emphasis on the importance of these projects to neuroscience research.

Information: