Investigating how spiders spin their silk, researchers unravel a key step

Featured In: Instrumentation

By EurekAlert Wednesday, May 12, 2024

Loading...

Five times the tensile strength of steel and triple that of the currently best synthetic fibers: Spider silk is a fascinating material. But no one has thus far succeeded in producing the super fibers synthetically. How do spiders form long, highly stable and elastic fibers from the spider silk proteins stored in the silk gland within split seconds? Scientists from the Technische Universitaet Muenchen (TUM) and the University of Bayreuth have now succeeded in unraveling the secret. They present their results in the current issue of the prestigious scientific journal Nature.

"The high elasticity and extreme tensile strength of natural spider silk are unmatched, even by fibers produced from pure spider silk proteins," says Professor Horst Kessler, Carl-von-Linde Professor at the Institute for Advanced Study of the TU Muenchen. That highlights a key question in the artificial production of stable spider silk fibers: How do spiders manage to keep the high concentrations of raw material available in the silk gland, ready to produce the high tensile strength fiber at a moment's notice. Thomas Scheibel has been pursuing the secret of spider silk for years, until 2007 at TUM and since then at the University of Bayreuth.

Spider silk consists of protein molecules, long chains comprising thousands of amino-acid elements. X-ray structure analyses show that the finished fiber has areas in which several protein chains are interlinked via stable physical connections. These connections provide the high stability. Between these connections are unlinked areas that give the fibers their great elasticity.

The situation within the silk gland is, however, very different: The silk proteins are stored in high concentrations in an aqueous environment, awaiting deployment. The areas responsible for interlinking may not approach each other too closely; otherwise the proteins would clump up instantaneously. Hence, these molecules must have some kind of special storage configuration.

X-ray structure analysis, which is so successful in other domains, was of little help here, since it can only be used to analyze crystals. And up to the instant in which the solid silk fiber is formed, everything takes place in solution. The method of choice was therefore nuclear magnetic resonance spectroscopy (NMR). Using the equipment of the Bavarian NMR Center, Franz Hagn, a biochemist from Horst Kessler's work group at the Institute for Advanced Study (TUM-IAS) at the TU Muenchen, managed to unravel the structure of a control element responsible for the formation of the solid fiber. Now the researchers could, together with Lukas Eisoldt and John Hardy from Thomas Scheibel's group, shed light on this control element's mode of operation.

"Under storage conditions in the silk gland these control domains are connected pair-wise in such a way that the interlinking areas of both chains can not lie parallel to each other," Thomas Scheibel explains. "Interlinking is thus effectively prevented." The protein chains are stored with the polar areas on the outside and the hydrophobic parts of the chain on the inside, ensuring good solubility in the aqueous environment.

When the protected proteins enter the spinning duct, they encounter an environment with an entirely different salt concentration and composition. This renders two salt bridges of the control domain unstable, and the chain can unfold. Furthermore, the flow in the narrow spinning duct results in strong shear forces. The long protein chains are aligned in parallel, thus placing the areas responsible for interlinking side by side. The stable spider silk fiber is formed.

"Our results have shown that the molecular switch we discovered at the C-terminal end of the protein chain is decisive, both for safe storage and for the fiber formation process," says Franz Hagn. An important foundation for these results was established through cooperation of Thomas Scheibel's group with Professor Andreas Bausch's workgroup at the Physics Department at TUM. Using microsystem technology, they developed an artificial spinning duct. Meanwhile the Bayreuth scientists are working intensively to develop a biomimetic spinning apparatus, within the framework of a federally supported joint project with industrial partners. The potential applications are countless, from resorbable surgical suture material to technical fibers for the automotive industry.

The research has been supported through the provision of testing and measuring time by the Bavarian NMR Center, through the Deutsche Forschungsgemeinschaft (DFG), the Excellence Cluster Center for Integrated Protein Science Munich (CIPSM) and the Institute for Advanced Study at the TU Muenchen, where Horst Kessler has been working as Senior Fellow since becoming Emeritus. Franz Hagn's work is funded by the Bayerisches Elitenetzwerk CompInt, co-author John G. Hardy from the Alexander von Humboldt Foundation.

SOURCE

Join the Discussion
Rate Article: Average 4.5 out of 5
register or log in to comment on this article!

0 Comments

Add Comment

Text Only 2000 character limit

Page 1 of 1

Research Exchange

Simultaneous Measurement of Multiple Signaling Pathways in Human Leukemias Using Flow Cytometry

May 24

Next generation assays will need to be robust and standardized in order to make the transition from a research procedure to a routine clinical assay. Flow cytometry provides a unique and sensitive method to accomplish these requirements.

Automated Forensic DNA Methods: Relieving the Pain of Validation

Apr 21

Automation can increase a forensics lab's sample processing capacity, but it can also add to the complexity of system verification and validation.

Successful Sample Identification

Apr 1

2D Barcodes ensure that a multitude of samples can be tracked in a variety of storage conditions.

Multi-Parametric Cellular Analysis

Mar 23

Flow cytometers perform a variety of multi parametric applications and have been used for an expanding set of cell analysis applications over the past forty years.

Step up to the MIQE

Mar 30

Over the years, polymerase chain reaction (PCR) has evolved into a readily automated, high throughput quantitative technology. Real-time quantitative PCR (qPCR) has become the industry standard for the detection and quantification of nucleic acids for multiple application, including quantification of RNA levels. But a lack of consensus among researchers on how to best perform and interpret qPCR experiments presents a major hurdle for advancement of the technology. This problem is exacerbated by insufficient experimental detail in published work, which impedes the ability of others to accurately evaluate or replicate reported results.

Fast Optimization of a Multiplex Influenza Identification Panel Using a Thermal Gradient

Mar 30

The year 2009 was marked by the emergence of a novel influenza A (H1N1) virus that infects humans. There is a need to identify the different strains of influenza virus for purposes of monitoring the H1N1 strain pandemic and for other epidemiological and scientific purposes.

Advantages of Monolithic Laser Combiner Technology in Confocal Microscopy Systems

Jan 6

Fluorescence microscopy techniques require a reliable light source at the desired wavelength or wavelengths, with minimal downtime for maintenance and alignment. Lasers are a popular light source, although the alignment and upkeep of laser combiners is a time-consuming prospect for many users.

Size-Exclusion Chromatography for Purification of Biomolecules

Dec 2 2009

Size-exclusion chromatography (SEC) is a popular method to separate biomolecules based on their size. Primarily, it is applied to the separation of biopolymers such as proteins and nucleic acids, i.e. water-soluble polymers.

Using the Tecan Genesis Workstation to Automate a Cytometric Bead Array (CBA) Immunoassay

Mar 11

The poster describe the process involved in automating a Cytometric Bead Array (CBA) immunoassay developed to measure relative concentrations of serum antibodies against Tetanus (TT), Sperm Whale Myoglobin (SWM) and Keyhole Limpet Hemocyanin (KLH) in KLH-immunized volunteers.

Ensuring Quality in Assays Performed with Automated Liquid Handlers

Feb 2

The focus of this presentation is to highlight the need of ensuring quality in important assays performed with automated liquid handlers. Nearly all assays performed within a laboratory are volume-dependent. In turn, all concentrations of biological and chemical components in these assays, as well as the associated dilution protocols, are volume-dependent. Because analyte concentration is volume-dependent, an assay’s results might be falsely interpreted if liquid handler variability and inaccuracies are unknown or if the system(s) go unchecked for a long period.

Inkjet System for Protein Crystallography

Feb 1

X-ray crystallography is used routinely by scientists to obtain the three dimensional structure of a biological molecule of interest.Such information can be used to determine how a pharmaceutical interacts with a protein target and what changes might improve functionality. However, the crystallization of macromolecules still remains a serious hindrance in structural determination despite impressive advances in screening methods and technologies.

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Nov 9 2009

Action selection is modulated by external stimuli either directly or via memory retrieval. In a constantly changing environment, animals have evolved attention-like processes to effectively filter the incoming sensory stream. These attention-like processes, in turn, are modulated by memory. The neurobiological nature of how attention, action selection and memory are inter-connected is unknown. We describe here new phenotypes of the memory mutant radish in the fruit fly Drosophila.

Prokariotic Cell Collection in Denmark

Nov 6 2009

I would like to know about a prokariotic cell collection in Denmark. Is there a cell bank in this country? I need a Lactobacillus strain for a fermentation assay and this information about the bank is very helpful for me.

Request for Entries

Oct 16 2009

Ask the Experts is your chance to get the answers to questions on applications, materials, methods, processes, and technologies. Email you question to bst_web@advantagemedia.com, and the editors of Bioscience Technology will find an appropriate expert to answer it. Watch this space in the future to see the questions your colleagues are posting.

STAY INFORMED: SUBSCRIBE TO

Magazine and E-mail Newsletters

Loading...
E-mail:   

MULTIMEDIA

Video:

Neuroscience Diseases of The Brain and How The Mind Emerges

Neuroscience Diseases of The Brain and How The Mind Emerges

Nov 8 2009

Dennis Choi, director of Emory Universitys Neuroscience Center, is renowned for his groundbreaking research on brain and spinal cord injury.

Podcasts:

Allen Institute for Brain Research

Allen Institute for Brain Research

Oct 14 2009

Discussed in this interview are both the mouse brain project and the human cortex project with an emphasis on the importance of these projects to neuroscience research.

Information: