Epigenetic gene silencing may hold key to fatal lung vascular disease

Featured In: Lab Tools

By EurekAlert Monday, June 7, 2024

Loading...

A rare but fatal disease of blood vessels in the lung may be caused in part by aberrant silencing of genes rather than genetic mutation, new research reports.

Pulmonary arterial hypertension, a syndrome characterized by gradual blockage of blood vessels in the lungs, has been linked to genetic causes in a small percentage of patients. But University of Chicago researchers have now found that a form of epigenetics – the modification of gene expression – causes the disease in an animal model and could contribute to the disease in humans.

Published in the American Heart Association journal Circulation, the finding opens a promising avenue for research into the origins of vascular disorders.

"This introduces a new concept: DNA methylation, a form of epigenetics, may play a role in pulmonary arterial hypertension," said Jalees Rehman, MD, Assistant Professor of Medicine and an author of the paper. "We think this is going to be a big part of cardiovascular research in the next decade to come."

Pulmonary arterial hypertension, or PAH, has a 15 percent mortality rate at one year following diagnosis and causes tens of thousands of U.S. hospitalizations each year. The disease is known to run in families and has been traced to a mutation in the BMPR2 gene, but only 1 in 4 people with that mutation develop PAH.

So a team of researchers, led by Stephen Archer, MD, Professor of Medicine and Chief of the Section of Cardiology at the University of Chicago Medical Center, looked for other inheritable causes of PAH. The hunt led them to a gene that encodes an important mitochondria protein called superoxide dismutase 2 (SOD2). SOD2 is expressed at lower levels in the lungs of PAH patients but the gene itself is not mutated.

Experiments conducted in fawn-hooded rats, a breed that spontaneously develops PAH, found that the SOD2 gene is hypermethylated, an epigenetic modification that silences gene expression.

"Picture the reading of DNA (gene transcription) as the opening of a zipper. Transcription factors must run along this DNA zipper to allow the DNA to open so the gene can be read. Methylation blocks this reading, much like having a thread stuck in the zipper prevents its opening. This way, methylation silences a perfectly normal gene" Archer said.

Using an inhibitor of the cell's methylating enzymes, Archer's team was able to reduce SOD2 methylation and increase the gene's expression in fawn-hooded rats. Treatment of the rats with a SOD2 analog also reversed the PAH-like symptoms of the rats, increasing their ability to exercise on a treadmill - the same test used in patients with this disease.

"That's an exciting aspect of epigenetics," Archer said. "Unlike a mutation that might be hard to fix, if a gene were silenced by methylation and you wanted to turn it back on there are drugs that do that, and you might be able to reactivate it."

Other promising therapeutic implications stem from crossover between PAH and cancer. The SOD2 protein is involved in oxidative stress, the natural response of cells to harmful reactive oxygen species. When the gene is down-regulated, cells become resistant to the programmed cell death of apoptosis and grow unabated, similar to what is seen in cancer. Indeed, a research group at the University of Iowa recently published data supporting a role for epigenetic SOD2 silencing in tumor growth, Archer said.

"It makes you think diseases of excess cell proliferation may have a commonality that's bigger than the specialty of cardiology or pulmonary medicine or oncology," Archer said. "I think there is going to be a lot of interest in the next few years in cancer drugs being applied to vascular diseases, and vascular drugs being applied to malignant diseases."

Additional studies will be required to determine if lower SOD2 levels in PAH patients are due to the same mechanism of epigenetic silencing observed in rats, Archer said. If the gene is indeed hypermethylated in humans, that mechanism may be a promising therapeutic target to reverse or limit disease in PAH patients, particularly as some demethylating drugs are already used for blood disorders.

Similarly, proof of methylation would be valuable for diagnostics, enabling epigenetic screens that would allow doctors to quickly assess a person's susceptibility to PAH. Researchers are also looking at the possibility that other vascular diseases, such as atherosclerosis and coronary heart disease have epigenetic origins as well.

"What would be a very interesting question to ask is whether this same thing happens in other blood vessels, where smooth muscle cells also cause disease," Rehman said. "We're hoping that in other vascular diseases we will find similar epigenetic modifiers. It's really a conceptual innovation in vascular research."

SOURCE

Join the Discussion
Rate Article: Average 0 out of 5
register or log in to comment on this article!

0 Comments

Add Comment

Text Only 2000 character limit

Page 1 of 1

Research Exchange

Optical Imaging in Stem Cell Research

Jun 1

Developing sensitive, non-invasive technologies to monitor engraftment in vivo is essential to accelerate the clinical implementation of cell therapies.

Standing Up in a Court of Law

Jun 1

Private forensic testing laboratory ensures data integrity with advanced calibration systems.

Simultaneous Measurement of Multiple Signaling Pathways in Human Leukemias Using Flow Cytometry

May 24

Next generation assays will need to be robust and standardized in order to make the transition from a research procedure to a routine clinical assay. Flow cytometry provides a unique and sensitive method to accomplish these requirements.

Automated Forensic DNA Methods: Relieving the Pain of Validation

Apr 21

Automation can increase a forensics lab's sample processing capacity, but it can also add to the complexity of system verification and validation.

Step up to the MIQE

Mar 30

Over the years, polymerase chain reaction (PCR) has evolved into a readily automated, high throughput quantitative technology. Real-time quantitative PCR (qPCR) has become the industry standard for the detection and quantification of nucleic acids for multiple application, including quantification of RNA levels. But a lack of consensus among researchers on how to best perform and interpret qPCR experiments presents a major hurdle for advancement of the technology. This problem is exacerbated by insufficient experimental detail in published work, which impedes the ability of others to accurately evaluate or replicate reported results.

Fast Optimization of a Multiplex Influenza Identification Panel Using a Thermal Gradient

Mar 30

The year 2009 was marked by the emergence of a novel influenza A (H1N1) virus that infects humans. There is a need to identify the different strains of influenza virus for purposes of monitoring the H1N1 strain pandemic and for other epidemiological and scientific purposes.

Advantages of Monolithic Laser Combiner Technology in Confocal Microscopy Systems

Jan 6

Fluorescence microscopy techniques require a reliable light source at the desired wavelength or wavelengths, with minimal downtime for maintenance and alignment. Lasers are a popular light source, although the alignment and upkeep of laser combiners is a time-consuming prospect for many users.

Size-Exclusion Chromatography for Purification of Biomolecules

Dec 2 2009

Size-exclusion chromatography (SEC) is a popular method to separate biomolecules based on their size. Primarily, it is applied to the separation of biopolymers such as proteins and nucleic acids, i.e. water-soluble polymers.

Using the Tecan Genesis Workstation to Automate a Cytometric Bead Array (CBA) Immunoassay

Mar 11

The poster describe the process involved in automating a Cytometric Bead Array (CBA) immunoassay developed to measure relative concentrations of serum antibodies against Tetanus (TT), Sperm Whale Myoglobin (SWM) and Keyhole Limpet Hemocyanin (KLH) in KLH-immunized volunteers.

Ensuring Quality in Assays Performed with Automated Liquid Handlers

Feb 2

The focus of this presentation is to highlight the need of ensuring quality in important assays performed with automated liquid handlers. Nearly all assays performed within a laboratory are volume-dependent. In turn, all concentrations of biological and chemical components in these assays, as well as the associated dilution protocols, are volume-dependent. Because analyte concentration is volume-dependent, an assay’s results might be falsely interpreted if liquid handler variability and inaccuracies are unknown or if the system(s) go unchecked for a long period.

Inkjet System for Protein Crystallography

Feb 1

X-ray crystallography is used routinely by scientists to obtain the three dimensional structure of a biological molecule of interest.Such information can be used to determine how a pharmaceutical interacts with a protein target and what changes might improve functionality. However, the crystallization of macromolecules still remains a serious hindrance in structural determination despite impressive advances in screening methods and technologies.

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Nov 9 2009

Action selection is modulated by external stimuli either directly or via memory retrieval. In a constantly changing environment, animals have evolved attention-like processes to effectively filter the incoming sensory stream. These attention-like processes, in turn, are modulated by memory. The neurobiological nature of how attention, action selection and memory are inter-connected is unknown. We describe here new phenotypes of the memory mutant radish in the fruit fly Drosophila.

Prokariotic Cell Collection in Denmark

Nov 6 2009

I would like to know about a prokariotic cell collection in Denmark. Is there a cell bank in this country? I need a Lactobacillus strain for a fermentation assay and this information about the bank is very helpful for me.

Request for Entries

Oct 16 2009

Ask the Experts is your chance to get the answers to questions on applications, materials, methods, processes, and technologies. Email you question to bst_web@advantagemedia.com, and the editors of Bioscience Technology will find an appropriate expert to answer it. Watch this space in the future to see the questions your colleagues are posting.

STAY INFORMED: SUBSCRIBE TO

Magazine and E-mail Newsletters

Loading...
E-mail:   

MULTIMEDIA

Video:

Neuroscience Diseases of The Brain and How The Mind Emerges

Neuroscience Diseases of The Brain and How The Mind Emerges

Nov 8 2009

Dennis Choi, director of Emory Universitys Neuroscience Center, is renowned for his groundbreaking research on brain and spinal cord injury.

Podcasts:

Allen Institute for Brain Research

Allen Institute for Brain Research

Oct 14 2009

Discussed in this interview are both the mouse brain project and the human cortex project with an emphasis on the importance of these projects to neuroscience research.

Information: