Study finds epigenetic similarities between Wilms tumor cells and normal kidney stem cells

Featured In: Lab Tools

By EurekAlert Thursday, June 3, 2024

Loading...

A detailed analysis of the epigenetics—factors controlling when and in what tissues genes are expressed—of Wilms tumor reveals striking similarities to stem cells normally found in fetal kidneys. These findings by Massachusetts General Hospital (MGH) Cancer Center researchers have revealed new cellular pathways that are critical for Wilms tumor development and may also apply to other pediatric cancers. The report appears in the June 4 Cell Stem Cell.

Genetic mutations—changes to the sequence of DNA molecules—are known to underlie many types of cancer. But the role of epigenetics in tumor development is just beginning to be explored. The MGH team has been using advanced sequencing technology to investigate the role of chromatin, the structure that makes up chromosomes and consists of DNA wrapped around a protein backbone studded with molecules that can activate or suppress gene expression.

"An organism has only one genome, but it has many epigenomes because different cell types organize their genome into chromatin in ways that allow them to express just the right set of genes," explains Bradley Bernstein, MD, PhD, of MGH Pathology and the MGH Cancer Center, senior author of the study. Earlier studies from Bernstein's team used cutting-edge sequencing technologies to identify chromatin structures characteristic of embryonic stem cells. They observed active versions of chromatin structures termed "domains" at genes with critical developmental functions and saw features of both active and repressed chromatin at "bivalent" genes that were not currently expressed but maintained the potential for activation.

For the current study, Bernstein teamed with Miguel Rivera, MD, and Daniel Haber, MD, PhD, of the MGH Cancer Center, along with Aviva Presser Aiden, PhD, of the Broad Institute, to apply those powerful genomic technologies to cancer. The researchers chose to examine the epigenetics of Wilms tumor, a kidney cancer that usually occurs in children, because pediatric cancer cells are likely to have few genetic alterations, making it easier to identify epigenetic changes.

Whole-genome chromatin screening of Wilms tumors, normal kidney tissues and fetal kidney tissues revealed that the chromatin of Wilms tumors contains the same types of active and bivalent chromatin structures identified in embryonic stem cells. Among the active genes were many well established regulators of kidney development, as well as a new set of genes that may be critical in tumor development. The presence of bivalent genes shows that normal developmental programs had been interrupted at an early stage in the tumor cells. In essence, Wilms cells give rise to a tumor by indefinitely continuing to behave like renal stem cells.

While surgical removal and chemotherapy are successful for the majority of patients with Wilms tumor, current treatment protocols fail in up to 15 percent of patients, notes Rivera, who is co-lead author of the Cell Stem Cell report. "Epigenetic analysis has provided an unprecedented level of detail on the biology of Wilms tumor, allowing us to identify new genes that are likely to be important in this disease and to pinpoint specific defects in developmental pathways. Both of these findings may provide new avenues for therapy," he says. Rivera is an assistant professor of Pathology, and Bernstein an associate professor of Pathology at Harvard Medical School.

SOURCE

Join the Discussion
Rate Article: Average 0 out of 5
register or log in to comment on this article!

0 Comments

Add Comment

Text Only 2000 character limit

Page 1 of 1

Research Exchange

Optical Imaging in Stem Cell Research

Jun 1

Developing sensitive, non-invasive technologies to monitor engraftment in vivo is essential to accelerate the clinical implementation of cell therapies.

Standing Up in a Court of Law

Jun 1

Private forensic testing laboratory ensures data integrity with advanced calibration systems.

Simultaneous Measurement of Multiple Signaling Pathways in Human Leukemias Using Flow Cytometry

May 24

Next generation assays will need to be robust and standardized in order to make the transition from a research procedure to a routine clinical assay. Flow cytometry provides a unique and sensitive method to accomplish these requirements.

Automated Forensic DNA Methods: Relieving the Pain of Validation

Apr 21

Automation can increase a forensics lab's sample processing capacity, but it can also add to the complexity of system verification and validation.

Step up to the MIQE

Mar 30

Over the years, polymerase chain reaction (PCR) has evolved into a readily automated, high throughput quantitative technology. Real-time quantitative PCR (qPCR) has become the industry standard for the detection and quantification of nucleic acids for multiple application, including quantification of RNA levels. But a lack of consensus among researchers on how to best perform and interpret qPCR experiments presents a major hurdle for advancement of the technology. This problem is exacerbated by insufficient experimental detail in published work, which impedes the ability of others to accurately evaluate or replicate reported results.

Fast Optimization of a Multiplex Influenza Identification Panel Using a Thermal Gradient

Mar 30

The year 2009 was marked by the emergence of a novel influenza A (H1N1) virus that infects humans. There is a need to identify the different strains of influenza virus for purposes of monitoring the H1N1 strain pandemic and for other epidemiological and scientific purposes.

Advantages of Monolithic Laser Combiner Technology in Confocal Microscopy Systems

Jan 6

Fluorescence microscopy techniques require a reliable light source at the desired wavelength or wavelengths, with minimal downtime for maintenance and alignment. Lasers are a popular light source, although the alignment and upkeep of laser combiners is a time-consuming prospect for many users.

Size-Exclusion Chromatography for Purification of Biomolecules

Dec 2 2009

Size-exclusion chromatography (SEC) is a popular method to separate biomolecules based on their size. Primarily, it is applied to the separation of biopolymers such as proteins and nucleic acids, i.e. water-soluble polymers.

Using the Tecan Genesis Workstation to Automate a Cytometric Bead Array (CBA) Immunoassay

Mar 11

The poster describe the process involved in automating a Cytometric Bead Array (CBA) immunoassay developed to measure relative concentrations of serum antibodies against Tetanus (TT), Sperm Whale Myoglobin (SWM) and Keyhole Limpet Hemocyanin (KLH) in KLH-immunized volunteers.

Ensuring Quality in Assays Performed with Automated Liquid Handlers

Feb 2

The focus of this presentation is to highlight the need of ensuring quality in important assays performed with automated liquid handlers. Nearly all assays performed within a laboratory are volume-dependent. In turn, all concentrations of biological and chemical components in these assays, as well as the associated dilution protocols, are volume-dependent. Because analyte concentration is volume-dependent, an assay’s results might be falsely interpreted if liquid handler variability and inaccuracies are unknown or if the system(s) go unchecked for a long period.

Inkjet System for Protein Crystallography

Feb 1

X-ray crystallography is used routinely by scientists to obtain the three dimensional structure of a biological molecule of interest.Such information can be used to determine how a pharmaceutical interacts with a protein target and what changes might improve functionality. However, the crystallization of macromolecules still remains a serious hindrance in structural determination despite impressive advances in screening methods and technologies.

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Nov 9 2009

Action selection is modulated by external stimuli either directly or via memory retrieval. In a constantly changing environment, animals have evolved attention-like processes to effectively filter the incoming sensory stream. These attention-like processes, in turn, are modulated by memory. The neurobiological nature of how attention, action selection and memory are inter-connected is unknown. We describe here new phenotypes of the memory mutant radish in the fruit fly Drosophila.

Prokariotic Cell Collection in Denmark

Nov 6 2009

I would like to know about a prokariotic cell collection in Denmark. Is there a cell bank in this country? I need a Lactobacillus strain for a fermentation assay and this information about the bank is very helpful for me.

Request for Entries

Oct 16 2009

Ask the Experts is your chance to get the answers to questions on applications, materials, methods, processes, and technologies. Email you question to bst_web@advantagemedia.com, and the editors of Bioscience Technology will find an appropriate expert to answer it. Watch this space in the future to see the questions your colleagues are posting.

STAY INFORMED: SUBSCRIBE TO

Magazine and E-mail Newsletters

Loading...
E-mail:   

MULTIMEDIA

Video:

Neuroscience Diseases of The Brain and How The Mind Emerges

Neuroscience Diseases of The Brain and How The Mind Emerges

Nov 8 2009

Dennis Choi, director of Emory Universitys Neuroscience Center, is renowned for his groundbreaking research on brain and spinal cord injury.

Podcasts:

Allen Institute for Brain Research

Allen Institute for Brain Research

Oct 14 2009

Discussed in this interview are both the mouse brain project and the human cortex project with an emphasis on the importance of these projects to neuroscience research.

Information: