New research aims to shut down viral assembly line

Featured In: Infectious Disease | Lab Tools

By EurekAlert Tuesday, January 11, 2024

newsvine diigo google
slashdot
Share
Loading...

Under the electron microscope, a coronavirus may resemble a spiny sea urchin or appear crownlike, (the shape from which this family of pathogens takes its name). Previously recognized as the second leading cause of the common cold in humans and for economically important diseases in many domesticated animals, a new disease form abruptly emerged as a major public health concern in 2002, when the SARS coronavirus (CoV) surfaced in Asia.

The rapid spread of the virus caused significant social and economic disruption worldwide , infecting over 8000 people with Sudden Acute Respiratory Syndrome or SARS and killing about 10 percent of them. While SARS-CoV was brought under control through decisive action by health officials, the sudden scourge underlined the threat posed by coronaviruses and spurred new research into the inner workings of these infectious agents.

Brenda Hogue and her colleagues at the Biodesign Institute at Arizona State University are studying the intricate formation of these viruses—a process known as viral assembly. The research may offer fresh insight, leading to a new generation of antiviral agents that can disrupt the ability of coronaviruses like SARS to assemble viable infectious particles. Such strategies may prove applicable against other classes of virus as well.

The group's work recently appeared in the Journal of Virology.

Viruses, Hogue stresses, differ fundamentally from other common microscopic pathogens like bacteria, in that viruses are structurally primitive, lacking the means to independently replicate. Viruses are composed of genetic information (DNA or RNA), encased by proteins. They exist in a shadowy region between living and non-living entities.

In order for a virus to replicate, it must commandeer machinery of a host cell it has infected. Nevertheless, viruses have evolved to be highly adept at this sort of replication-by-proxy, and can infect virtually all types of organisms, from animals and plants to bacteria and even Archaea. Viruses—of which millions of forms are known to exist—are far and away the most numerous (and successful) parasitic invaders on earth.

"Coronaviruses are a very large family of RNA viruses," Hogue says. "They infect humans and a broad range of animals." While the symptoms produced by coronavirus infection in humans tend to be respiratory, in animals, such viruses can cause a range of severe problems, from neurological ailments to immunosuppressive effects. Various coronaviruses are responsible for common colds in humans, though the combined upper and lower respiratory symptoms and gastrointestinal complications seen in SARS patients are unusual.

In the study reported in Journal of Virology, Hogue and her team closely examined one of the major proteins found in the coronavirus that is crucial to the pathogen's process of assembly. Known as the M, it is one of four proteins, in addition to S, N and E, required to produce a fully assembled viral particle, capable of infecting a host.

The membrane (M) protein makes up the bulk of the outer shell or envelope of the virus, forming a lattice that surrounds and shields the viral genome. The spike protein (S)—named for its spike-like or crown-like appearance under electron microscopy, is critical for allowing the coronavirus to attach to the host cell's receptors, prior to viral entry into the cell. The nucleocapsid (N) protein encapsidates the genomic RNA. The envelope or E protein is the least plentiful protein known to play a central role in virus assembly, though its presence is very important. In addition to assisting viral assembly, the E protein also appears to be involved in shuttling the newly assembled virions out of the cell, enabling these particles to escape and infect other host cells in the exponential process of viral infection.

The group wanted to determine the requirements for the M protein to function during assembly of the viral envelope. To establish this, coronaviruses were genetically manipulated to form mutant versions, exhibiting varying degrees of viability. Much of this manipulation focused on domains within the viral genome coding for a distinct structural and/or functional domain of the M protein. Conserved domains, as they are known, contain genetic sequence patterns or motifs that tend to recur across a number of different viruses or within a particular virus type, like catch phrases recurring in different books. These conserved domains are generally involved in functions essential to viral formation, survival or replication, making them an attractive target for therapeutic efforts designed to short-circuit viral assembly.

Viral pathogens like the SARS coronavirus, (along with hepatitis C and influenza), use RNA rather than DNA as their genetic material. In general, such RNA viruses mutate more rapidly than DNA viruses, posing particular challenges to virologists hoping to combat them. They can also acquire alterations that allow them to hop from one species to another. Something like this now appears to be at the root of the SARS outbreak.

"We think that the reservoir for this virus is bats, because a large number of SARS-like viruses have been isolated from bat populations around the world," Hogue says. SARS-CoV was subsequently able to infect a secondary animal host, now believed to be the civet cat—a mongoose-like creature found in Asia and sometimes used as a food source, particularly in China, where the SARS outbreak originated. Contact with infected civets in the open markets may have caused the initial human cases of SARS, which then rapidly spread— human to human—from the Guangdong provinces in China to 37 countries.

Viruses that act as respiratory pathogens, including SARS, are highly transmissible from person to person through contact with respiratory droplets that become aerosolized from coughs or sneezes. Virions may also persist on surfaces that come in contact with an infected individual. Following transmission, virions initiate the infectious process of host cells, which transpires in several important phases.

First, viral proteins located on the virus' outer capsid bind to particular receptors on the host cell's surface. Next, virions enter the cell, either by fusing their membranes with those of the host cell or through the process of endocytosis, in which the host cell takes in the virion in a membrane-bound vesicle. The virion is now in a position to begin the replication cycle, releasing its genetic material into the cell. The viral genome encodes genes that when expressed, yield the protein components necessary to assemble new virus particles.

Hogue stresses the importance of in silico analysis, in which large libraries of proteins can be screened through analysis, in order to identify conserved and non-conserved protein regions, thus greatly accelerating the pace of discovery. "The more we learn about these particular regions of proteins that are critically important for the assembly process," she says, "the likelier it is we can design molecules that will be able to interfere with this process."

While some conserved domain alterations in the M protein proved lethal to coronaviruses, others undermined viral assembly without shutting it down completely, often causing compensatory efforts on the part of the virus, (known as second site changes) which may offer insights into the virus' adaptive capabilities. In the coming year, Hogue plans to examine the non-lethal changes introduced, studying these mutant viruses under high-resolution cryo-EM, to determine how alterations of specific domains affect overall coronaviral structure.

Additionally, Hogue's group is closely examining the under-represented envelope or E protein. "One reason we are excited about this is that a number of enveloped viruses, including hepatitis C, influenza and others, that are of real medical significance, have small ion channel proteins," Hogue says. "If we can develop ways to target and obliterate the ion channel activities of these proteins, we may be able to disable these viruses and prevent or reduce infections."

SOURCE

Join the Discussion
Rate Article: Average 0 out of 5
register or log in to comment on this article!

0 Comments

Add Comment

Text Only 2000 character limit

Page 1 of 1

Research Exchange

Bringing the Cell Image into Focus

Nov 2 2010

Improvements in transmission electron microscope (TEM) technology increase the power of this imaging tool for the study of cell biology.

Finding a Cure for Spinal Cord Injury with On-Demand LIMS

Oct 25 2010

The Miami Project to Cure Paralysis finds an on-demand laboratory information management system (LIMS) helps to accelerate discovery in its HCS projects.

Saving Cells: Image Processing for Improved Viability, Part II: Iterative Deconvolution

Oct 25 2010

3D light microscopy and deconvolution provide a means to investigate 3D structure, providing near-confocal quality images without the temporal requirements or potentially damaging phototoxicity associated with other 3D imaging technologies. This article is Part II in a series regarding viability, resolution improvement, and measurement in fluorescence imaging. Part I focused on spectral unmixing.

Saving Cells: Image Processing for Improved Viability

Sep 22 2010

This article is Part I of a two-part series regarding viability, resolution improvement, and measurement in fluorescence imaging. Part II will focus on deconvolution.

Selecting Robots for Use in Drug Discovery and Testing

Dec 6 2010

Drug discovery and testing, with their need for speed, repeatability and verification, are ideally suited to benefit from robot automation. It is therefore not surprising that robots have been at the forefront of automation developments in both these areas.

HP Scalable Network Storage Systems for Life Sciences

Sep 13 2010

Life sciences research today is advancing exponentially, each step bringing us closer to the realization of truly personalized medicine–preventive care and treatments designed specifically for each individual. In the near future, PCPGM healthcare researchers expect to be able to use predictive genetic testing to create custom treatment plans for individuals and deliver dramatic improvements over today’s one-size-fits-all approach. But research capabilities are only part of the equation; current storage and operating capacities must also evolve to accommodate ever-expanding amounts of data before the goal of personalized medicine can be realized.

Step up to the MIQE

Mar 30 2010

Over the years, polymerase chain reaction (PCR) has evolved into a readily automated, high throughput quantitative technology. Real-time quantitative PCR (qPCR) has become the industry standard for the detection and quantification of nucleic acids for multiple application, including quantification of RNA levels. But a lack of consensus among researchers on how to best perform and interpret qPCR experiments presents a major hurdle for advancement of the technology. This problem is exacerbated by insufficient experimental detail in published work, which impedes the ability of others to accurately evaluate or replicate reported results.

Fast Optimization of a Multiplex Influenza Identification Panel Using a Thermal Gradient

Mar 30 2010

The year 2009 was marked by the emergence of a novel influenza A (H1N1) virus that infects humans. There is a need to identify the different strains of influenza virus for purposes of monitoring the H1N1 strain pandemic and for other epidemiological and scientific purposes.

Using the Tecan Genesis Workstation to Automate a Cytometric Bead Array (CBA) Immunoassay

Mar 11 2010

The poster describe the process involved in automating a Cytometric Bead Array (CBA) immunoassay developed to measure relative concentrations of serum antibodies against Tetanus (TT), Sperm Whale Myoglobin (SWM) and Keyhole Limpet Hemocyanin (KLH) in KLH-immunized volunteers.

Ensuring Quality in Assays Performed with Automated Liquid Handlers

Feb 2 2010

The focus of this presentation is to highlight the need of ensuring quality in important assays performed with automated liquid handlers. Nearly all assays performed within a laboratory are volume-dependent. In turn, all concentrations of biological and chemical components in these assays, as well as the associated dilution protocols, are volume-dependent. Because analyte concentration is volume-dependent, an assay’s results might be falsely interpreted if liquid handler variability and inaccuracies are unknown or if the system(s) go unchecked for a long period.

Inkjet System for Protein Crystallography

Feb 1 2010

X-ray crystallography is used routinely by scientists to obtain the three dimensional structure of a biological molecule of interest.Such information can be used to determine how a pharmaceutical interacts with a protein target and what changes might improve functionality. However, the crystallization of macromolecules still remains a serious hindrance in structural determination despite impressive advances in screening methods and technologies.

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Nov 9 2009

Action selection is modulated by external stimuli either directly or via memory retrieval. In a constantly changing environment, animals have evolved attention-like processes to effectively filter the incoming sensory stream. These attention-like processes, in turn, are modulated by memory. The neurobiological nature of how attention, action selection and memory are inter-connected is unknown. We describe here new phenotypes of the memory mutant radish in the fruit fly Drosophila.

Effects on enantiomeric drug disposition and open-field behavior after chronic treatment with venlafaxine in the P-glycoprotein knockout mice model.

Dec 31 2010

RATIONALE: P-glycoprotein (P-gp) plays an important role in the efflux of drugs from the brain back into the bloodstream and can influence the pharmacokinetics and pharmacodynamics of drug molecules. To our knowledge, no studies have reported pharmacodynamic...

Self-administration of cocaine and remifentanil by monkeys: choice between single drugs and mixtures.

Dec 31 2010

RATIONALE: Cocaine and opioids are often co-abused. As yet, however, there is no clear evidence that the drugs interact to make the mixture a more effective reinforcer. OBJECTIVE: The present study examined the relative reinforcing potency and maximum...

Complete genome sequence of a carbon monoxide-utilizing acetogen, Eubacterium limosum KIST612.

Dec 31 2010

Eubacterium limosum KIST612 is an anaerobic acetogenic bacterium that uses CO as the sole carbon/energy source and produces acetate, butyrate, and ethanol. To evaluate its potential as a syngas microbial catalyst, we have sequenced the complete 4.3-Mb genome of E. limosum...

Complete genome sequence of the bacterium Ketogulonicigenium vulgare Y25.

Dec 31 2010

Ketogulonicigenium vulgare is characterized by the efficient production of 2KGA from L-sorbose. Ketogulonicigenium vulgare Y25 is known as a 2-keto-L-gulonic acid-producing strain in the vitamin C industry. Here we report the finished, annotated genome sequence of...

Prokariotic Cell Collection in Denmark

Nov 6 2009

I would like to know about a prokariotic cell collection in Denmark. Is there a cell bank in this country? I need a Lactobacillus strain for a fermentation assay and this information about the bank is very helpful for me.

Request for Entries

Oct 16 2009

Ask the Experts is your chance to get the answers to questions on applications, materials, methods, processes, and technologies. Email you question to bst_web@advantagemedia.com, and the editors of Bioscience Technology will find an appropriate expert to answer it. Watch this space in the future to see the questions your colleagues are posting.

STAY INFORMED: SUBSCRIBE TO

Magazine and E-mail Newsletters

Loading...
E-mail:   

MULTIMEDIA

Video:

Viewing SureFocus Slides

Jun 11 2010

A demonstration of SureFocus Microscope Slides in the review of AFB Smears. SureFocus Slides are a patent-pending breakthrough in tuberculosis detection, as their fluorescent staining circle remains visible during review, Fluorescence Microscopy.

Podcasts:

Allen Institute for Brain Research

Allen Institute for Brain Research

Oct 14 2009

Discussed in this interview are both the mouse brain project and the human cortex project with an emphasis on the importance of these projects to neuroscience research.

Information: