Black holes and warped space: New UK telescope shows off first images

Featured In: International News

By University of Manchester Thursday, December 9, 2023

newsvine diigo google
slashdot
Share
Loading...

09 Dec 2023

This dramatic image is the first to be produced by e-MERLIN, a powerful new array of radio telescopes linked across the UK.

The Double Quasar through e-MERLIN

Spearheaded by the University of Manchester’s Jodrell Bank Observatory and funded by the Science and Technology Facilities Council, the e-MERLIN telescope will allow astronomers to address key questions relating to the origin and evolution of galaxies, stars and planets.

To demonstrate its capabilities, University of Manchester astronomers turned the new telescope array toward the “Double Quasar”. This enigmatic object, first discovered by Jodrell Bank, is a famous example of Einstein’s theory of gravity in action. 

The new image shows how the light from a quasar billions of light years away is bent around a foreground galaxy by the curvature of space.

This light has been travelling for 9 billion years before it reached the Earth. The quasar is a galaxy powered by a super-massive black hole, leading to the ejection of jets of matter moving at almost the speed of light - one of which can be seen arcing to the left in this new e-MERLIN image.

The warping of space results in a ‘gravitational lens’ producing multiple images of the same quasar - the two brightest of these lensed images can be seen here as two bright objects, one below the other.

The foreground galaxy whose mass is responsible for the lensing effect is also visible just above the lower quasar image.  The radio emission seen in the e-MERLIN image suggests that this galaxy also harbours a black hole, albeit somewhat smaller.

The UK’s national facility for radio astronomy, e-MERLIN is now set to produce increasingly-detailed radio images of stars and galaxies using seven telescopes spread up to 220 km apart across the UK and working as one. This combination of widely-spread telescopes provides astronomers with a powerful ‘zoom lens’ with which they can study the fine details of astronomical events out towards the edge of the observable universe.

The radio signals collected by the telescopes are brought back to Jodrell Bank using a new optical fibre network. These fibre links and advanced electronic receivers will allow astronomers to collect far more data and so see in a single day what would have previously taken them more than a year of observations.

In parallel with this successful demonstration of the new telescope system, work has begun on ‘early science’ observations intended to rigorously test its capabilities. The project has attracted astronomers from over 100 institutes across the world who will use e-MERLIN to study a huge range of astrophysics.

This includes star birth and death, black holes and galaxy evolution, pulsars (the collapsed cores of exploded stars) and young planets forming around nearby stars.

The e-MERLIN project has been funded by the Science and Technology Facilities Council (STFC), the Northwest Development Agency,

The University of Manchester, The University of Cambridge and Liverpool John Moores University. It is being operated by STFC and the University of Manchester.

Minister for Science and Universities, David Willetts said: “The image produced by the e-Merlin telescope is inspiring to all with an interest in the space sector.

“I am confident this impressive project will reap significant scientific rewards - it demonstrates how effective British universities are in this field."

Professor Simon Garrington, Director of e-MERLIN at the University of Manchester, says:

“This first image demonstrates the success of the complex new system of electronics and optical fibre links.

“It is also testament to the hard work put in by our engineers, scientists and technicians to turn our vision of a huge fibre-connected array of telescopes into a reality. We are very much looking forward to the new scientific results that will flow from the telescope over the coming years.”

Professor John Womersley of the Science and Technology Facilities Council said:  “e-Merlin is a flagship project for the UK in radio astronomy, a scientific field where the UK has a rich legacy, a strong future, and is proud to be the home of some of the very best researchers in the world. 

“The project has attracted more than 300 astronomers from over 100 institutes in more than 20 countries who will use the power of this ‘super telescope’ to conduct major scientific legacy projects.”

Professor Mike Garrett, General Director of ASTRON, the Netherlands Institute for Radio Astronomy, said: “e-MERLIN is going to be a transformational telescope - astronomers around the world can't wait to get their hands on it.

“As a pathfinder for the next-generation international radio telescope, the Square Kilometre Array, e-MERLIN represents another giant leap forward for the global radio astronomy community."

Notes for editors

Images and an animation is available at http://www.jb.man.ac.uk/news/2010/emerlin1/

For media enquiries contact:

Daniel Cochlin
Media Relations
The University of Manchester
+44 (0)161 275 8387
daniel.cochlin@manchester.ac.uk

Further quotes
Professor Steve Watts, Head of the University of Manchester’s School of Physics & Astronomy (of which Jodrell Bank Observatory is a part), says: “The development of this groundbreaking new telescope follows more than 60 years of radio astronomy research and development at Jodrell Bank Observatory. Our astronomers will be working closely with colleagues from around the world to make new scientific discoveries with e-MERLIN.”


Professor Steve Rawlings of the University of Oxford says: “This is a fantastic image. Nature provides us with gravitational lenses that help us study black holes across the Universe, but it is talented engineers and scientists that develop the technologies and instruments that allow us to exploit them. It's great for the UK that the e-MERLIN team are such world leaders in radio astronomy.

Dr Neal Jackson of the University of Manchester, an expert in gravitational lensing, says: “This first image of the Double Quasar clearly demonstrates how useful e-MERLIN is going to be in our studies of gravitational lenses. By mapping the bending of light by mass we will be able to study the way in which both stars and dark matter are distributed in galaxies and how this changes as the universe evolves.”

e-MERLIN
e-MERLIN is an array of seven radio telescopes across the UK whose signals are brought back on an optical fibre network to The University of Manchester’s Jodrell Bank Observatory. Here they are combined in a highly-specialised supercomputer called a correlator (designed and constructed by the Dominion Radio Astrophysical Observatory of the National Research Council of Canada).  The telescope array can then operate as a dedicated radio interferometer to produce high-resolution images. With a maximum baseline length of 220 km, e-MERLIN provides a unique capability for radio imaging with 0.01-0.15-arcsec resolution at wide bands around frequencies of 1.5, 5 and 22 GHz (L, C and K bands).

e-MERLIN is the UK's national facility for high resolution radio astronomy and is operated by The University of Manchester and the Science and Technology Facilities Council. Further information can be found on the e-MERLIN website at http://www.e-merlin.ac.uk.
The e-MERLIN upgrade has been funded by the Science and Technology Facilities Council (STFC), the Northwest Development Agency, The University of Manchester, The University of Cambridge and Liverpool John Moores University. It is being operated by STFC and the University of Manchester.

The Double Quasar image

The “Double Quasar” is a gravitational lens - a famous confirmation of Albert Einstein’s General Theory of Relativity showing that mass causes space to be curved. 

For a detailed summary of the Double Quasar, all images and an animation please visit http://www.jb.man.ac.uk/news/2010/emerlin1/


 

SOURCE

Join the Discussion
Rate Article: Average 0 out of 5
register or log in to comment on this article!

0 Comments

Add Comment

Text Only 2000 character limit

Page 1 of 1

Research Exchange

Bringing the Cell Image into Focus

Nov 2

Improvements in transmission electron microscope (TEM) technology increase the power of this imaging tool for the study of cell biology.

Finding a Cure for Spinal Cord Injury with On-Demand LIMS

Oct 25

The Miami Project to Cure Paralysis finds an on-demand laboratory information management system (LIMS) helps to accelerate discovery in its HCS projects.

Saving Cells: Image Processing for Improved Viability, Part II: Iterative Deconvolution

Oct 25

3D light microscopy and deconvolution provide a means to investigate 3D structure, providing near-confocal quality images without the temporal requirements or potentially damaging phototoxicity associated with other 3D imaging technologies. This article is Part II in a series regarding viability, resolution improvement, and measurement in fluorescence imaging. Part I focused on spectral unmixing.

Saving Cells: Image Processing for Improved Viability

Sep 22

This article is Part I of a two-part series regarding viability, resolution improvement, and measurement in fluorescence imaging. Part II will focus on deconvolution.

Selecting Robots for Use in Drug Discovery and Testing

Dec 6

Drug discovery and testing, with their need for speed, repeatability and verification, are ideally suited to benefit from robot automation. It is therefore not surprising that robots have been at the forefront of automation developments in both these areas.

HP Scalable Network Storage Systems for Life Sciences

Sep 13

Life sciences research today is advancing exponentially, each step bringing us closer to the realization of truly personalized medicine–preventive care and treatments designed specifically for each individual. In the near future, PCPGM healthcare researchers expect to be able to use predictive genetic testing to create custom treatment plans for individuals and deliver dramatic improvements over today’s one-size-fits-all approach. But research capabilities are only part of the equation; current storage and operating capacities must also evolve to accommodate ever-expanding amounts of data before the goal of personalized medicine can be realized.

Step up to the MIQE

Mar 30

Over the years, polymerase chain reaction (PCR) has evolved into a readily automated, high throughput quantitative technology. Real-time quantitative PCR (qPCR) has become the industry standard for the detection and quantification of nucleic acids for multiple application, including quantification of RNA levels. But a lack of consensus among researchers on how to best perform and interpret qPCR experiments presents a major hurdle for advancement of the technology. This problem is exacerbated by insufficient experimental detail in published work, which impedes the ability of others to accurately evaluate or replicate reported results.

Fast Optimization of a Multiplex Influenza Identification Panel Using a Thermal Gradient

Mar 30

The year 2009 was marked by the emergence of a novel influenza A (H1N1) virus that infects humans. There is a need to identify the different strains of influenza virus for purposes of monitoring the H1N1 strain pandemic and for other epidemiological and scientific purposes.

Using the Tecan Genesis Workstation to Automate a Cytometric Bead Array (CBA) Immunoassay

Mar 11

The poster describe the process involved in automating a Cytometric Bead Array (CBA) immunoassay developed to measure relative concentrations of serum antibodies against Tetanus (TT), Sperm Whale Myoglobin (SWM) and Keyhole Limpet Hemocyanin (KLH) in KLH-immunized volunteers.

Ensuring Quality in Assays Performed with Automated Liquid Handlers

Feb 2

The focus of this presentation is to highlight the need of ensuring quality in important assays performed with automated liquid handlers. Nearly all assays performed within a laboratory are volume-dependent. In turn, all concentrations of biological and chemical components in these assays, as well as the associated dilution protocols, are volume-dependent. Because analyte concentration is volume-dependent, an assay’s results might be falsely interpreted if liquid handler variability and inaccuracies are unknown or if the system(s) go unchecked for a long period.

Inkjet System for Protein Crystallography

Feb 1

X-ray crystallography is used routinely by scientists to obtain the three dimensional structure of a biological molecule of interest.Such information can be used to determine how a pharmaceutical interacts with a protein target and what changes might improve functionality. However, the crystallization of macromolecules still remains a serious hindrance in structural determination despite impressive advances in screening methods and technologies.

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Attention Deficit & Hyperactivity in a Drosophila Memory Mutant

Nov 9 2009

Action selection is modulated by external stimuli either directly or via memory retrieval. In a constantly changing environment, animals have evolved attention-like processes to effectively filter the incoming sensory stream. These attention-like processes, in turn, are modulated by memory. The neurobiological nature of how attention, action selection and memory are inter-connected is unknown. We describe here new phenotypes of the memory mutant radish in the fruit fly Drosophila.

Low Demographic Variability in Wild Primate Populations: Fitness Impacts of Variation, Covariation, and Serial Correlation in Vital Rates.

10 hours ago

Abstract: In a stochastic environment, long-term fitness can be influenced by variation, covariation, and serial correlation in vital rates (survival and fertility). Yet no study of an animal population has parsed the contributions of these three aspects of...

Prokariotic Cell Collection in Denmark

Nov 6 2009

I would like to know about a prokariotic cell collection in Denmark. Is there a cell bank in this country? I need a Lactobacillus strain for a fermentation assay and this information about the bank is very helpful for me.

Request for Entries

Oct 16 2009

Ask the Experts is your chance to get the answers to questions on applications, materials, methods, processes, and technologies. Email you question to bst_web@advantagemedia.com, and the editors of Bioscience Technology will find an appropriate expert to answer it. Watch this space in the future to see the questions your colleagues are posting.

STAY INFORMED: SUBSCRIBE TO

Magazine and E-mail Newsletters

Loading...
E-mail:   

MULTIMEDIA

Video:

Viewing SureFocus Slides

Jun 11

A demonstration of SureFocus Microscope Slides in the review of AFB Smears. SureFocus Slides are a patent-pending breakthrough in tuberculosis detection, as their fluorescent staining circle remains visible during review, Fluorescence Microscopy.

Podcasts:

Allen Institute for Brain Research

Allen Institute for Brain Research

Oct 14 2009

Discussed in this interview are both the mouse brain project and the human cortex project with an emphasis on the importance of these projects to neuroscience research.

Information: